Answer:
The energy becomes 4 times greater.
Explanation:
We know that the energy of a wave is proportional to the square of its amplitude
E ∝ Amplitude^2
Since the original amplitude = 0.5 m
and the new amplitude becomes = 1 m
We are doubling the amplitude. This means that the new energy will be affected by a factor of 4
E_new ∝ (2*Amplitude)^2 =
E_new ∝ 4*(Amplitude)^2
E_new = 4*E
Answer:
ΔTmin = 3.72 °C
Explanation:
With a 16-bit ADC, you get a resolution of
steps. This means that the ADC will divide the maximum 10V input into 65536 steps:
ΔVmin = 10V / 65536 = 152.59μV
Using the thermocouple sensitiviy we can calculate the smallest temperature change that 152.59μV represents on the ADC:

The correct answer is "C". 'Old theories are adjusted to incorporate all old new information.' This makes the most sense, regarded the old and new information should be taken into consideration.
I hope this helped you!
Brainliest answer is always appreciated!
The clicker emits EM (electromagnetic) wave which travels at the speed of light, that is
v = 3 x 10⁸ m/s
The frequency is
f = 900mHz = 9 x 10⁸ Hz
Because velocity = frequency * wavelength, the wavelength, λ, is given by
fλ = v
λ = v/f
= (3 x 10⁸ m/s) / (9 x 10⁸ 1/s)
= 1/3 m
Answer: 1/3 m
I think the correct answer from the choices listed above is option A. Wave motion is a movement of energy through space or a medium . Some waves are visible light waves, heat waves, sound waves and the like. Hope this answers the question.