Explanation:
Below is an attachment containing the solution. 
 
        
             
        
        
        
Answer:
0.661 s, 5.29 m
Explanation:
In the y direction:
Δy = 2.14 m
v₀ = 0 m/s
a = 9.8 m/s²
Find: t
Δy = v₀ t + ½ at²
(2.14 m) = (0 m/s) t + ½ (9.8 m/s²) t²
t = 0.661 s
In the x direction:
v₀ = 8 m/s
a = 0 m/s²
t = 0.661 s
Find: Δx
Δx = v₀ t + ½ at²
Δx = (8 m/s) (0.661 s) + ½ (0 m/s²) (0.661 s)²
Δx = 5.29 m
Round as needed.
 
        
             
        
        
        
Answer: Tsunami.
Explanation :
Tsunami is the result of a sudden vertical offset in the ocean floor and is most often the result of plate movement on the ocean floor.
Tsunami is caused due to the displacement of a large volume of water like in an ocean. It consists of a series of waves. It destroys coastlines and coastal settlements. It is also known as a tidal wave. 
So, the correct option is (b) Tsunami.
 
        
             
        
        
        
Explanation:
Given that,
Electrostatic force, 
Distance, 
(a)  , q is the charge on the ion
, q is the charge on the ion               

 
      

(b) Let n is the number of electrons are missing from each ion. It can be calculated as :


n = 2
Hence, this is the required solution.                        
 
        
             
        
        
        
If you have 12 atoms of hydrogen before a chemical reaction, the number of hydrogen atoms that will be present after the chemical reaction is 12 atoms.
The Law of Conservation of Mass (LOCOM) states that mass is neither created nor destroyed before and after any chemical reaction.
According to the Law of Conservation of Mass (LOCOM), a balanced chemical equation requires that the number of atoms on the reactant side must be equal to the number of atoms on the product side of any chemical reaction.
In this context, a chemical reaction having 12 atoms of hydrogen as reactants at the beginning, should also produce a total of 12 atoms of hydrogen as products at the end of the chemical reaction.