PbSO₄ partially dissociates in water. the balanced equation is;
PbSO₄(s) ⇄ Pb²⁺(aq) + SO₄²⁻(aq)
Initial - -
Change -X +X +X
Equilibrium X X
Ksp = [Pb²⁺(aq)] [SO₄²⁻(aq)]
1.6 x 10⁻⁸ = X * X
1.6 x 10⁻⁸ = X²
X = 1.3 x 10⁻⁴ M
Hence the Pb²⁺ concentration in underground water is 1.3 x 10⁻⁴ M.
[Pb²⁺] = 1.3 x 10⁻⁴ M.
= 1.3 x 10⁻⁴ mol / L x 207 g / mol
= 26.91 ppm
Answer: obey the "law of conservation of mass".
_____________________________________
Dichlorine monoxide has the same structure like that of water. So, this is a polar molecule. For polar molecules, the dominant intermolecular force would be dipole-dipole forces. For HBr, there is a force between two oppositely charged ions, H⁺ and Br⁻. So, the dominant intermolecular force is electrostatic attraction.
What's wrong with this setup is the substrate on which you have positioned
the drop is "dirty and unclean" meaning it is not being dampened by
the solution. This action can be corrected by comprehensively cleaning the
substrate where the drop will be positioned.
The empirical formula is P₂O₃