Answer:
C1/C2 = 0.213 or C2/C1 = 4.68
Explanation:
Please refer to the attached image for step by step explanation.
if we are walking on a perfectly smooth ground which has no friction our force would simply cancel out the force reverted by the ground and we would fall.
We need it to help push out feet off the ground
Hope those helps :)
600Hz is the driving frequency needed to create a standing wave with five equal segments.
To find the answer, we have to know about the fundamental frequency.
<h3>How to find the driving frequency?</h3>
- The following expression can be used to relate the fundamental frequency to the driving frequency;
f(n) = n * f (1)
where, f(1) denotes the fundamental frequency and the driving frequency f(n).
- The standing wave has four equal segments, hence with n=4 and f(n)=4, we may calculate the fundamental frequency.
f(4) = 4× f (1)
480 = 4× f(1)
f(1) = 480/4 =120Hz.
So, 120Hz is the fundamental frequency.
- To determine the driving frequency necessary to create a standing wave with five equally spaced peaks?
- For, n = 5,
f(n) = n 120Hz,
f(5) = 5×120Hz=600Hz.
Consequently, 600Hz is the driving frequency needed to create a standing wave with five equal segments.
Learn more about the fundamental frequency here:
brainly.com/question/2288944
#SPJ4
The tangential velocity of the car's tire is the product of the angular velocity and radius of the car's tire which is 11(r) m/s.
<h3>
Angular velocity of the tire</h3>
The angular velocity of the tire is the rate of change of angular displacement of the tire with time.
The magnitude of the angular velocity of the tire is calculated as follows;
ω = 2πN
where;
- N is the number of revolutions per second
ω = 2π x (5.25 / 3)
ω = 11 rad/s
<h3>Tangential velocity of the tire</h3>
The tangential velocity of the car's tire is the product of the angular velocity and radius of the car's tire.
The magnitude of the tangential velocity is caculated as follows;
v = ωr
where;
- r is the radius of the car's tire
v = 11r m/s
Learn more about tangential velocity here: brainly.com/question/25780931
According to the Work-Energy Theorem, the work done on an object is equal to the change in the kinetic energy of the object:

Since the car ends with a kinetic energy of 0J (because it stops), then the work needed to stop the car is equal to the initial kinetic energy of the car:

Replace m=1100kg and v=112km/h. Write the speed in m/s. Remember that 1m/s = 3.6km/h:

Therefore, the answer is: 532,346 J.