Answer:
eccentrcity of orbit is 0.22
Explanation:
GIVEN DATA:
Initial velocity of satellite = 8333.3 m/s
distance from the sun is 600 km
radius of earth is 6378 km
as satellite is acting parallel to the earth therefore
and radial component of given velocity is zero
we have
h = 6.97*10^6 *8333.3 = 58.08*10^9 m^2/s
we know that


so

solvingt for 

therefore eccentrcity of orbit is 0.22
Answer:
Sound barrier.
Explanation:
Sound barrier is a sudden increase in drag and other effects when an aircraft travels faster than the speed of sound. Other undesirable effects are experienced in the transonic stage, such as relative air movement creating disruptive shock waves and turbulence. One of the adverse effect of this sound barrier in early plane designs was that at this speed, the weight of the engine required to power the aircraft would be too large for the aircraft to carry. Modern planes have designs that now combat most of these undesirable effects of the sound barrier.
Answer:
The solution code is written in Java.
System.out.println(numItems);
Explanation:
Java <em>println() </em>method can be used to display any string on the console terminal. We can use <em>println()</em> method to output the value held by variable <em>numItems.</em> The <em>numItems </em>is passed as the input parameter to <em>println()</em> and this will output the value of <em>numItems</em> to console terminal and at the same time the output with be ended with a newline automatically.
Question:
The question is not complete. See the complete question and the answer below.
A well that pumps at a constant rate of 0.5m3/s fully penetrates a confined aquifer of 34 m thickness. After a long period of pumping, near steady state conditions, the measured drawdowns at two observation wells 50m and 100m from the pumping well are 0.9 and 0.4 m respectively. (a) Calculate the hydraulic conductivity and transmissivity of the aquifer (b) estimate the radius of influence of the pumping well, and (c) calculate the expected drawdown in the pumping well if the radius of the well is 0.4m.
Answer:
T = 0.11029m²/sec
Radius of influence = 93.304m
expected drawdown = 3.9336m
Explanation:
See the attached file for the explanation.
Answer:
(a) Increases
(b) Increases
(c) Increases
(d) Increases
(e) Decreases
Explanation:
The tensile modulus of a semi-crystalline polymer depends on the given factors as:
(a) Molecular Weight:
It increases with the increase in the molecular weight of the polymer.
(b) Degree of crystallinity:
Tensile strength of the semi-crystalline polymer increases with the increase in the degree of crystallinity of the polymer.
(c) Deformation by drawing:
The deformation by drawing in the polymer results in the finely oriented chain structure of the polymer with the greater inter chain secondary bonding structure resulting in the increase in the tensile strength of the polymer.
(d) Annealing of an undeformed material:
This also results in an increase in the tensile strength of the material.
(e) Annealing of a drawn material:
A semi crystalline material which is drawn when annealed results in the decreased tensile strength of the material.