Given which are missing in your question:
the flask is filled with 1.45 g of argon at 25 C°
So according to this formula (Partial pressure):
PV= nRT
first, we need n, and we can get by substitution by:
n = 1.45/mass weight of argon
= 1.45 / 39.948 = 0.0363 mol of Ar
we have R constant = 0.0821
and T in kelvin = 25 + 273 = 298
and V = 1 L
∴ P * 1 = 0.0363* 0.0821 * 298 = 0.888 atm
Answer:
2.11 x 10²⁴ molecules.
Explanation:
- <em>It is known that every 1.0 mole of a molecule contains Avogadro's number of molecules (NA = 6.022 x 10²³).</em>
<em><u>Using cross multiplication:</u></em>
1.0 mole of H₂O contains → 6.022 x 10²³ molecules.
3.5 mole of H₂O contains → ??? molecules.
∴ 3.5 mole of H₂O contain = (3.5 mol)(6.022 x 10²³) = 2.11 x 10²⁴ molecules.
Protons cannot be lost without the atoms becoming an entirely different element. Elements can infact have different numbers of neutrons within the same element, but neutrons are not related to the electrical charge. The answer is c. electrons.
Answer: -112200J
Explanation:
The amount of heat (Q) released from an heated substance depends on its Mass (M), specific heat capacity (C) and change in temperature (Φ)
Thus, Q = MCΦ
Since,
Q = ?
Mass of water vapour = 30.0g
C = 187 J/ G°C
Φ = (Final temperature - Initial temperature)
= 100°C - 120°C = -20°C
Then apply the formula, Q = MCΦ
Q = 30.0g x 187 J/ G°C x -20°C
Q = -112200J (The negative sign does indicates that heat was released to the surroundings)
Thus, -112200 joules of heat is released when cooling the superheated vapour.
Chemical change because it cannot be reversed