Electronic Configuration of elements in a period is same because If you see the electronic Configuration of elements in a period you will notice that the valence shell electrons for all elements are present in the same Shell. For example, in first period consisting of Hydrogen and Helium, both the elements' valence electrons are present in the same Shell.
Electronic Configuration of Hydrogen,
1s^1
Electronic Configuration of Helium,
1s^2
Both elements' valance electrons are present in the 1st shell
(This is just a small example to understand the concept because other periods are long but the first period is short that's why I gave the example of the first period)
Answer:
<em><u>To determine the number of significant figures in a number use the following 3 rules:</u></em>
<em><u>To determine the number of significant figures in a number use the following 3 rules:Non-zero digits are always significant.</u></em>
<em><u>To determine the number of significant figures in a number use the following 3 rules:Non-zero digits are always significant.Any zeros between two significant digits are significant.</u></em>
<em><u>To determine the number of significant figures in a number use the following 3 rules:Non-zero digits are always significant.Any zeros between two significant digits are significant.A final zero or trailing zeros in the decimal portion ONLY are significant.</u></em>
Answer:
In my opinion, I think its 2
Explanation:
Answer:
49.86 × 10²³ atoms of Al
Explanation:
Given data:
Number of moles of Al = 8.28 mol
Number of atoms = ?
Solution:
The given problem will solve by using Avogadro number.
It is the number of atoms , ions and molecules in one gram atom of element, one gram molecules of compound and one gram ions of a substance.
The number 6.022 × 10²³ is called Avogadro number.
For example,
18 g of water = 1 mole = 6.022 × 10²³ molecules of water
1.008 g of hydrogen = 1 mole = 6.022 × 10²³ atoms of hydrogen
For 8.28 moles of Al:
1 mole = 6.022 × 10²³ atoms of Al
8.28 mol×6.022 × 10²³ atoms / 1mol
49.86 × 10²³ atoms of Al