Answer:
A skater moving downhill at increasing speed
Explanation:
- A push or pul on object called force .It is of two types.
- Balanced force
- Unbalanced force
To be able to write correctly the equilibrium expression of a reaction, we need to know the balanced reaction and the phases of the substances in the reaction. When substances are solid, pure liquid they are not included in the expression. We do as follows:
<span>4KO2(s) + 2H2O(g) = 4KOH(s) + 3O2(g)
K = [O2]^3 / [H2O]^2</span>
Answer:
![5.31*10^{-10} = \frac{[]H_{2}]^{2}[O_{2}]}{[H_{2}O]^{2}}](https://tex.z-dn.net/?f=5.31%2A10%5E%7B-10%7D%20%3D%20%5Cfrac%7B%5B%5DH_%7B2%7D%5D%5E%7B2%7D%5BO_%7B2%7D%5D%7D%7B%5BH_%7B2%7DO%5D%5E%7B2%7D%7D)
Explanation:
For a chemical reaction, equilibrium is a state at which the rate of the forward reaction equals that of the reverse reaction. The equilibrium constant Keq is a parameter characteristic of this state which is expressed as a ratio of the concentration of the products to that of the reactants.
For a hypothetical reaction:
xA + yB ⇄ zC
The equilibrium constant is :
![Keq = \frac{[A]^{x}[B]^{y}}{[C]^{z} }](https://tex.z-dn.net/?f=Keq%20%3D%20%5Cfrac%7B%5BA%5D%5E%7Bx%7D%5BB%5D%5E%7By%7D%7D%7B%5BC%5D%5E%7Bz%7D%20%7D)
The given reaction involves the decomposition of H2O into H2 and O2

The equilibrium constant is expressed as :
![Keq = \frac{[]H_{2}]^{2}[O_{2}]}{[H_{2}O]^{2}}](https://tex.z-dn.net/?f=Keq%20%3D%20%5Cfrac%7B%5B%5DH_%7B2%7D%5D%5E%7B2%7D%5BO_%7B2%7D%5D%7D%7B%5BH_%7B2%7DO%5D%5E%7B2%7D%7D)
Since Keq = 5.31*10^-10
![5.31*10^{-10} = \frac{[]H_{2}]^{2}[O_{2}]}{[H_{2}O]^{2}}](https://tex.z-dn.net/?f=5.31%2A10%5E%7B-10%7D%20%3D%20%5Cfrac%7B%5B%5DH_%7B2%7D%5D%5E%7B2%7D%5BO_%7B2%7D%5D%7D%7B%5BH_%7B2%7DO%5D%5E%7B2%7D%7D)
Answer:
The correct answer is 4
Explanation:
Boron trifluoride (BF₃) has a molecular geometry (as shown in the image in the question) referred to as trigonal planar; this is because each of the the fluorine atoms/molecules (bonded to the central boron atom) is placed in such a way that they form the three "end points"/"domains" of an equilateral triangle. Hence, the correct option is the last option.
Answer:
The correct answer is option (B) Two molecules of H2 and a molecule of O2 must collide at one time
Explanation:
2H2(g) + O2(g) → 2 H2O(g)
2 1 2
Considering the given reaction, for water molecule to be form, two molecules of hydrogen and one molecule of oxygen must collide at the same time. The product obtained from the collision is two molecules of water as steam. 2 H2O(g)