Answer:
1) Dimensions of shear rate is
.
2)Dimensions of shear stress are
Explanation:
Since the dimensions of velocity 'v' are
and the dimensions of distance 'y' are
, thus the dimensions of
become
and hence the units become
.
Now we know that the dimensions of coefficient of dynamic viscosity
are
thus the dimensions of shear stress can be obtained from the given formula as
![[\tau ]=[ML^{-1}T^{-1}]\times [T^{-1}]\\\\[\tau ]=[ML^{-1}T^{-2}]](https://tex.z-dn.net/?f=%5B%5Ctau%20%5D%3D%5BML%5E%7B-1%7DT%5E%7B-1%7D%5D%5Ctimes%20%5BT%5E%7B-1%7D%5D%5C%5C%5C%5C%5B%5Ctau%20%5D%3D%5BML%5E%7B-1%7DT%5E%7B-2%7D%5D)
Now we know that dimensions of momentum are ![[MLT^{-1}]](https://tex.z-dn.net/?f=%5BMLT%5E%7B-1%7D%5D)
The dimensions of
are ![[L^{2}T]](https://tex.z-dn.net/?f=%5BL%5E%7B2%7DT%5D)
Thus the dimensions of ![\frac{Moumentum}{Area\times time}=\frac{MLT^{-1}}{L^{2}T}=[MLT^{-2}]](https://tex.z-dn.net/?f=%5Cfrac%7BMoumentum%7D%7BArea%5Ctimes%20time%7D%3D%5Cfrac%7BMLT%5E%7B-1%7D%7D%7BL%5E%7B2%7DT%7D%3D%5BMLT%5E%7B-2%7D%5D)
Which is same as that of shear stress. Hence proved.
Answer:
screw is the answer of the question
Answer:
A good design for a portable device to mix paint minimizing the shaking forces and vibrations while still effectively mixing the paint. Is:
The best design is one with centripetal movement. Instead of vertical or horizontal movement. With a container and system of holding structures made of materials that could absorb the vibration effectively.
Explanation:
First of all centripetal movement would be friendlier to our objective as it would not shake the can or the machine itself with disruptive vibrations. Also, we would have to use materials with a good grade of force absorption to eradicate the transmission of the movement to the rest of the structure. Allowing the reduction of the shaking forces while maintaining it effective in the process of mixing.
mark me the brainiest here
average speed (in km/h) of a car stuck in traffic that drives 12 kilometers in 2 hours.