1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Scorpion4ik [409]
3 years ago
9

Which equation is correct according to Ohm’s law? Which equation is correct according to Ohm’s law? A.) V = IR B.) I = R/V C.) R

= I/V D.) R = IV
Physics
2 answers:
vodomira [7]3 years ago
6 0

Answer:

V = IR

Explanation:

Required

Which equation represents ohm's law?

Literally, ohm's law implies that current (I) is directly proportional to voltage (V) and inversely proportional to resistance (R).

Mathematically, this can be represented as:

I\ \alpha\ \frac{V}{R}

Convert the expression to an equation

I\ =\ \frac{V}{R}

Multiply both sides by R to make V the subject

I\ * R\ =\ \frac{V}{R} * R

I\ * R\ =V

Reorder

V = I\ * R

V = IR

<em>Option (a) is correct; Others are not</em>

Morgarella [4.7K]3 years ago
4 0

Answer:

V=ir

Explanation:

Ohm's law deals with the relation between voltage and current in an ideal conductor. It states that: Potential difference across a conductor is proportional to the current that pass through it. It is expressed as V=IR. The correct answers from the choices are:

v = ir

You might be interested in
What is true about the relationship between the kinetic energy of molecules in an object and the objects temperature?
vekshin1

As the temperature increases the kinetic energy of the molecules increases, if u add more heat you get more kinetic energy.

6 0
3 years ago
Why do you need to learn about Volcanoes?
nevsk [136]
That they sometimes explode?
5 0
3 years ago
Read 2 more answers
A miniature quadcopter is located at x = -2.25 m and y, - 5.70 matt - 0 and moves with an average velocity having components Vv,
kupik [55]

Recall that average velocity is equal to change in position over a given time interval,

\vec v_{\rm ave} = \dfrac{\Delta \vec r}{\Delta t}

so that the <em>x</em>-component of \vec v_{\rm ave} is

\dfrac{x_2 - (-2.25\,\mathrm m)}{1.60\,\mathrm s} = 2.70\dfrac{\rm m}{\rm s}

and its <em>y</em>-component is

\dfrac{y_2 - 5.70\,\mathrm m}{1.60\,\mathrm s} = -2.50\dfrac{\rm m}{\rm s}

Solve for x_2 and y_2, which are the <em>x</em>- and <em>y</em>-components of the copter's position vector after <em>t</em> = 1.60 s.

x_2 = -2.25\,\mathrm m + \left(2.70\dfrac{\rm m}{\rm s}\right)(1.60\,\mathrm s) \implies \boxed{x_2 = 2.07\,\mathrm m}

y_2 = 5.70\,\mathrm m + \left(-2.50\dfrac{\rm m}{\rm s}\right)(1.60\,\mathrm s) \implies \boxed{y_2 = 1.70\,\mathrm m}

Note that I'm reading the given details as

x_1 = -2.25\,\mathrm m \\\\ y_1 = -5.70\,\mathrm m \\\\ v_x = 2.70\dfrac{\rm m}{\rm s}\\\\ v_y=-2.50\dfrac{\rm m}{\rm s}

so if any of these are incorrect, you should make the appropriate adjustments to the work above.

8 0
3 years ago
The normal eye, myopic eye and old age
yanalaym [24]

Answer:

1)    f’₀ / f = 1.10, the relationship between the focal length (f'₀) and the distance to the retina (image) is given by the constructor's equation

2) the two diameters have the same order of magnitude and are very close to each other

Explanation:

You have some problems in the writing of your exercise, we will try to answer.

1) The equation to be used in geometric optics is the constructor equation

          \frac{1}{f} = \frac{1}{p} + \frac{1}{q}

where p and q are the distance to the object and the image, respectively, f is the focal length

* For the normal eye and with presbyopia

the object is at infinity (p = inf) and the image is on the retina (q = 15 mm = 1.5 cm)

        \frac{1}{f'_o} = 1/ inf + \frac{1}{1.5}

        f'₀ = 1.5 cm

this is the focal length for this type of eye

* Eye with myopia

the distance to the object is p = 15 cm the distance to the image that is on the retina is q = 1.5 cm

           1 / f = 1/15 + 1 / 1.5

           1 / f = 0.733

            f = 1.36 cm

this is the focal length for the myopic eye.

In general, the two focal lengths are related

         f’₀ / f = 1.5 / 1.36

         f’₀ / f = 1.10

The question of the relationship between the focal length (f'₀) and the distance to the retina (image) is given by the constructor's equation

2) For this second part we have a diffraction problem, the point diameter corresponds to the first zero of the diffraction pattern that is given by the expression for a linear slit

          a sin θ= m λ

the first zero occurs for m = 1, as the angles are very small

          tan θ = y / f = sin θ / cos θ

for some very small the cosine is 1

          sin θ = y / f

where f is the distance of the lens (eye)

           y / f = lam / a

in the case of the eye we have a circular slit, therefore the system must be solved in polar coordinates, giving a numerical factor

           y / f = 1.22 λ / D

           y = 1.22 λ f / D

where D is the diameter of the eye

          D = 2R₀

          D = 2 0.1

          D = 0.2 cm

           

the eye has its highest sensitivity for lam = 550 10⁻⁹ m (green light), let's use this wavelength for the calculation

         

* normal eye

the focal length of the normal eye can be accommodated to give a focus on the immobile retian, so let's use the constructor equation

      \frac{1}{f} = \frac{1}{p} + \frac{1}{q}

sustitute

       \frac{1}{f} = \frac{1}{25} + \frac{1}{1.5}

       \frac{1}{f}= 0.7066

        f = 1.415 cm

therefore the diffraction is

        y = 1.22  550 10⁻⁹  1.415  / 0.2

        y = 4.75 10⁻⁶ m

this is the radius, the diffraction diameter is

       d = 2y

       d_normal = 9.49 10⁻⁶ m

* myopic eye

In the statement they indicate that the distance to the object is p = 15 cm, the retina is at the same distance, it does not move, q = 1.5 cm

       \frac{1}{f} = \frac{1}{15} + \frac{1}{ 1.5}

        \frac{1}{f}= 0.733

         f = 1.36 cm

diffraction is

        y = 1.22 550 10-9 1.36 10-2 / 0.2 10--2

        y = 4.56 10-6 m

the diffraction diameter is

        d_myope = 2y

         d_myope = 9.16 10-6 m

         \frac{d_{normal}}{d_{myope}} = 9.49 /9.16

        \frac{d_{normal}}{d_{myope}} =  1.04

we can see that the two diameters have the same order of magnitude and are very close to each other

8 0
3 years ago
What are two examples of population distribution?
Alex777 [14]
Three basic types of population distribution within a regional range are (from top to bottom) uniform, random, and clumped.
7 0
3 years ago
Other questions:
  • Which of these actions would increase heat transfer between two objects?
    13·2 answers
  • An airplane flies at an altitude of 36,000 km and is traveling at a velocity of 300.0 km/h to the north, but the tailwind is 20.
    14·2 answers
  • If the world population grows at a constant rate of 1.8% per annum, how many years will it take to double? A) 17.7 years
    13·1 answer
  • PLEASE HELP ME Color corresponds to the ______________ of light waves. wave speed cycles wavelength
    13·1 answer
  • A scientist wants to calculate the kinetic energy of a cheetah as it chases down its prey. What does the scientist need to measu
    5·2 answers
  • A battery is used to charge a parallel-plate capacitor, after which it is disconnected. Then the plates are pulled apart to twic
    9·1 answer
  • Keeping in mind the kinetic energy of a moving vehicle, how can a driver best prepare to enter sharp curves in the roadway
    5·2 answers
  • 25000 seconds is how many days?
    9·2 answers
  • 1.A car goes off a cliff horizontally at 49 m/s and falls for 5 seconds
    12·1 answer
  • Có mấy cách đo đại lượng vật lí
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!