The bacterial endospores are microorganisms formed due to nutrient deprivation. These are placed first on a paper strip and not directly in the fermentation broth because these microorganisms are very resistance, thus, they need to adjust to the environment first before being acclimated to it.
Answer: C2H4 + 3O2 → 2CO2 + 2H2O
Explanation:
2Al + 2O2 → 2AlO + O2 Not Balanced Properly: 2Al + O2 = 2AlO
C2H4 + 3O2 → 2CO2 + 2H2O Looks Good
2CH4 + O2 → 2CO + 4H2 Not Correct: CO should be CO2
Ca + O2 → CaOH Not Balanced and No source for the H
Answer:
d. 12.3 grams of Al2O3
Explanation:
The balanced chemical equation of this chemical reaction is as follows:
4Al + 3O2 --> 2Al2O3
Based on the balanced equation, 4 moles of aluminum (limiting reagent) reacts to form 2 moles of aluminum oxide (Al2O3).
First, we need to convert the mass of aluminum to moles using the formula;
mole = mass/molar mass
Molar mass of Al = 27g/mol
mole = 6.50/27
= 0.241mol of Al.
Hence, if 4 moles of aluminum (limiting reagent) reacts to form 2 moles of aluminum oxide (Al2O3).
Then, 0.241mol of Al will produce (0.241 × 2/4) = 0.241/2 = 0.121mol of Al2O3.
Convert this mole value to molar mass using mole = mass/molar mass
Molar mass of Al2O3 = 27(2) + 16(3)
= 54 + 48
= 102g/mol
mass = molar mass × mole
mass = 102 × 0.121
mass of Al2O3 = 12.34grams.
Answer:
18,1 mL of a 0,304M HCl solution.
Explanation:
The neutralization reaction of Ba(OH)₂ with HCl is:
2 HCl + Ba(OH)₂ → BaCl₂ + 2 H₂O
The moles of 17,1 mL≡0,0171L of a 0,161M Ba(OH)₂ solution are:
= 2,7531x10⁻³moles of Ba(OH)₂
By the neutralization reaction you can see that 2 moles of HCl reacts with 1 mole of Ba(OH)₂. For a complete reaction of 2,7531x10⁻³moles of Ba(OH)₂ you need:
= 5,5062x10⁻³moles of HCl.
The volume of a 0,304M HCl solution for a complete neutralization is:
= 0,0181L≡18,1mL
I hope it helps!
P1V1 = P2V2
P1 = 0.60 atm
V1 = 10.2 L
P2 = ?
V2 = 3.0 L
Solve for P2 —> P2 = P1V1/V2 = (0.60 atm)(10.2 L) / (3.0 L) = 2.04 atm