Answer:
1. (S,O) < (Se,S) < (C,H) = (H,I) = (H,F) < (Si,Cl) < (K,Br)
Explanation:
The covalent character always increases down the group, this is because ionic character decreases down the group and also electronegativity.
In the same way, Covalent character always decreases across a period because electronegativity increases across a period.
The higher the electronegativity values between the two atoms, the more ionic it will be.
Answer:
7. genetics because hereditary is not the study of hereditary.
8. is hereditary because it is the study of how things pass on to next generation what is inherited.
Star clusters is the only thing i can think of that would apply.
The given question is incomplete. The complete question is as follows.
Sodium sulfate is slowly added to a solution containing 0.0500 M
and 0.0390 M
. What will be the concentration of
(aq) when
begins to precipitate? What percentage of the
can be separated from the Ag(aq) by selective precipitation?
Explanation:
The given reaction is as follows.

= 0.0390 M
When
precipitates then expression for
will be as follows.
![K_{sp} = [Ag^{+}]^{2}[SO^{2-}_{4}]](https://tex.z-dn.net/?f=K_%7Bsp%7D%20%3D%20%5BAg%5E%7B%2B%7D%5D%5E%7B2%7D%5BSO%5E%7B2-%7D_%7B4%7D%5D)
![1.20 \times 10^{-5} = (0.0390)^{2} \times [SO^{2-}_{4}]](https://tex.z-dn.net/?f=1.20%20%5Ctimes%2010%5E%7B-5%7D%20%3D%20%280.0390%29%5E%7B2%7D%20%5Ctimes%20%5BSO%5E%7B2-%7D_%7B4%7D%5D)
= 0.00788 M
Now, equation for dissociation of calcium sulfate is as follows.

![K_{sp} = [Ca^{2+}][SO^{2-}_{4}]](https://tex.z-dn.net/?f=K_%7Bsp%7D%20%3D%20%5BCa%5E%7B2%2B%7D%5D%5BSO%5E%7B2-%7D_%7B4%7D%5D)
![4.93 \times 10^{-5} = [Ca^{2+}] \times 0.00788](https://tex.z-dn.net/?f=4.93%20%5Ctimes%2010%5E%7B-5%7D%20%3D%20%5BCa%5E%7B2%2B%7D%5D%20%5Ctimes%200.00788)
= 0.00625 M
Now, we will calculate the percentage of
remaining in the solution as follows.

= 12.5%
And, the percentage of
that can be separated is as follows.
100 - 12.5
= 87.5%
Thus, we can conclude that 87.5% will be the concentration of
when
begins to precipitate.
Half-life is the length of time it takes for half of the radioactive atoms of a specific radionuclide to decay. A good rule of thumb is that, after seven half-lives, you will have less than one percent of the original amount of radiation.
<h3>What do you mean by half-life?</h3>
half-life, in radioactivity, the interval of time required for one-half of the atomic nuclei of a radioactive sample to decay (change spontaneously into other nuclear species by emitting particles and energy), or, equivalently, the time interval required for the number of disintegrations per second of a radioactive.
<h3>What affects the half-life of an isotope?</h3>
Since the chemical bonding between atoms involves the deformation of atomic electron wavefunctions, the radioactive half-life of an atom can depend on how it is bonded to other atoms. Simply by changing the neighboring atoms that are bonded to a radioactive isotope, we can change its half-life.
Learn more about half life of an isotope here:
<h3>
brainly.com/question/13979590</h3><h3 /><h3>#SPJ4</h3>