Average acceleration = (change in speed) / (time for the change)
The missile's change in speed is (5,000 - 0) = 5,000 m/s
Average acceleration = (5,000 m/s) / (10 sec)
= 500 m/s² (about 51 Gs)
Inconveniently, this isn't one of the choices on the list. Is there something wrong, either with the choices or with my solution ?
No. Relax. Everything is OK.
500 meters is the same thing as 0.5 kilometer. So my answer can also be written as 0.5 km/s² . That doesn't change anything, and it IS one of the listed choices.
The average acceleration is <em>0.5 km/sec² (d)</em> .
Answer:
1. It may change the direction of an object in motion.
2. It may cause change in velocity of an object in motion.
Explanation:
1.It may change the direction of an object in motion.
When an object is in motion,an applied force on that object may change its direction.
For example, a sailboat moving eastward, can suddenly change its direction by interaction of a storm wind blowing form the south.
2. It may cause change in velocity of an object in motion .
A force applied to an object in motion can increase or decrease its speed. When the force is applied to the object in motion in the direction of that object, its velocity may increase.
On the other hand, when the force is applied in the opposite direction to the object in motion, its velocity may reduce.
Answer:
Ice cube, molecules, melting, zero degrees, liquid, faster, temperature, 100 degrees, steam
Answer:
dolphins and wolfs very easy
Explanation:
Answer:
a) Time = 2.67 s
b) Height = 35.0 m
Explanation:
a) The time of flight can be found using the following equation:
(1)
Where:
: is the final position in the horizontal direction = 80 m
: is the initial position in the horizontal direction = 0
: is the initial velocity in the horizontal direction = 30 m/s
a: is the acceleration in the horizontal direction = 0 (the stone is only accelerated by gravity)
t: is the time =?
By entering the above values into equation (1) and solving for "t", we can find the time of flight of the stone:

b) The height of the hill is given by:
Where:
: is the final position in the vertical direction = 0
: is the initial position in the vertical direction =?
: is the initial velocity in the vertical direction =0 (the stone is thrown horizontally)
g: is the acceleration due to gravity = 9.81 m/s²
Hence, the height of the hill is:
I hope it helps you!