Answer:
∆T = Mv^2Y/2Cp
Explanation:
Formula for Kinetic energy of the vessel = 1/2mv^2
Increase in internal energy Δu = nCVΔT
where n is the number of moles of the gas in vessel.
When the vessel is to stop suddenly, its kinetic energy will be used to increase the temperature of the gas
We say
1/2mv^2 = ∆u
1/2mv^2 = nCv∆T
Since n = m/M
1/2mv^2 = mCv∆T/M
Making ∆T subject of the formula we have
∆T = Mv^2/2Cv
Multiple the RHS by Cp/Cp
∆T = Mv^2/2Cv *Cp/Cp
Since Y = Cp/CV
∆T = Mv^2Y/2Cp k
Since CV = R/Y - 1
We could also have
∆T = Mv^2(Y - 1)/2R k
Answer:
Power of the string wave will be equal to 5.464 watt
Explanation:
We have given mass per unit length is 0.050 kg/m
Tension in the string T = 60 N
Amplitude of the wave A = 5 cm = 0.05 m
Frequency f = 8 Hz
So angular frequency 
Velocity of the string wave is equal to 
Power of wave propagation is equal to 
So power of the wave will be equal to 5.464 watt
Work done = force * distance
work done = 200 * 20
work done = 4000J
-- We're going to be talking about the satellite's speed.
"Velocity" would include its direction at any instant, and
in a circular orbit, that's constantly changing.
-- The mass of the satellite makes no difference.
Since the planet's radius is 3.95 x 10⁵m and the satellite is
orbiting 4.2 x 10⁶m above the surface, the radius of the
orbital path itself is
(3.95 x 10⁵m) + (4.2 x 10⁶m)
= (3.95 x 10⁵m) + (42 x 10⁵m)
= 45.95 x 10⁵ m
The circumference of the orbit is (2 π R) = 91.9 π x 10⁵ m.
The bird completes a revolution every 2.0 hours,
so its speed in orbit is
(91.9 π x 10⁵ m) / 2 hr
= 45.95 π x 10⁵ m/hr x (1 hr / 3,600 sec)
= 0.04 x 10⁵ m/sec
= 4 x 10³ m/sec
(4 kilometers per second)