7. PE=0.5×700n/m×0.9m^2
0.9^2=0.81m
0.5×700×0.81= 283.5J
8. 2000=0.5×(x)×1.5m^2
1.5^2= 0.25
0.25×0.5=0.125
2000=0.125 (x)
2000/0.125=x
x=16000 n/m
9. 4000=0.5 (375 n/m)×(x)^2
0.5×187.5 (x)
4000/187.5=21.3333333333
Answer:
7.93 lbs is equal to 3596.987 grams.
Explanation:
The weight in grams is equal to the pounds multiplied by 453.59237.
So... you would multiply 7.93 by 453.59237.
7.93 x 453.59237 = 3596.987
Hope that helped!
A tuning fork's job is to establish a single note that everybody can tune to.
Most tuning forks are made to vibrate at 440 Hz, a tone known to musicians as "concert A." To tune a piano, you would start by playing the piano's "A" key while ringing an "A" tuning fork. If the piano is out of tune, you'll hear a distinct warble between the note you're playing and the note played by the tuning fork; the further apart the warbles, the more out-of-tune the piano. By either tightening or loosening the piano's strings, you reduce the warble until it's in line with the tuning fork. Once the "A" key is in tune, you would then adjust all of the instrument's 87 other keys to match. The method is much the same for most other instruments. Whether you're tuning a clarinet or guitar, simply play a concert A and adjust your instrument accordingly
Explanation:
It can be a bit tricky to hold a tuning fork while manipulating an instrument, which is why some musicians decide to clench the base of a ringing tuning fork in their teeth. This has the unique effect of transmitting sound through your bones, allowing your brain to "hear" the tone through your jaw. According to some urban legends, touching your teeth with a vibrating tuning fork is enough to make them explode. It's a myth, obviously, but if you have a cavity or a chipped tooth, you'll quickly find this method to be unbelievably painful.
Luckily, you can also buy tuning forks that come mounted on top of a resonator, a hollow wooden box designed to amplify a tuning fork's vibrations. In 1860, a pair of German inventors even devised a battery-powered tuning fork that musicians didn't need to ring again and again
The question is incomplete! circuit figure is attached below and answer and explanation is provided below.
Answer:
Bulb_A = Bulb_B = Bulb_D and Bulb_C = 0.
Explanation:
What happens when switch is open?
When the switch is open Bulb_C is open circuited meaning that there is no way for the current to flow through it. This path offers infinite resistance to the current therefore, current will try to take a least resistance path that is through Bulb_B.
So eventually, when the switch is open the circuit becomes a simple series circuit with path From battery to Bulb_A to Bulb_B to Bulb_D to battery with Bulb_C = 0.
What happens in a series circuit?
We know that in a series circuit, there is only one path for the current to flow therefore, same current will flow through all the series Bulbs and their brightness will be same. Bulb_A = Bulb_B = Bulb_D
Brightness in a series circuit:
We also know know that in a series circuit, resistance gets summed up and voltage across each Bulb gets shared which results in less power dissipation that's why Bulbs connected in series appear dimmer as compared to when they are connected in parallel.