Answer: a) 0.948 b) 117.5µf
Explanation:
Given the load, a total of 2.4kw and 0.8pf
V= 120V, 60 Hz
P= 2.4 kw, cos θ= 80
P= S sin θ - (p/cos θ) sin θ
= P tan θ(cos^-1 (0.8)
=2.4 tan(36.87)= 1.8KVAR
S= 2.4 + j1. 8KVA
1 load absorbs 1.5 kW at 0.707 pf lagging
P= 1.5 kW, cos θ= 0.707 and θ=45 degree
Q= Ptan θ= tan 45°
Q=P=1.5kw
S1= 1.5 +1.5j KVA
S1 + S2= S
2.4+j1.8= 1.5+1.5j + S2
S2= 0.9 + 0.3j KVA
S2= 0.949= 18.43 °
Pf= cos(18.43°) = 0.948
b.) pf to 0.9, a capacitor is needed.
Pf = 0.9
Cos θ= 0.9
θ= 25.84 °
(WC) V^2= P (tan θ1 - tan θ2)
C= 2400 ( tan (36. 87°) - tan (25.84°)) /2 πf × 120^2
f=60, π=22/7
C= 117.5µf
Answer:
![62.14\ \text{miles}](https://tex.z-dn.net/?f=62.14%5C%20%5Ctext%7Bmiles%7D)
![6213727.37\ \text{miles}](https://tex.z-dn.net/?f=6213727.37%5C%20%5Ctext%7Bmiles%7D)
Explanation:
The distance of the chain would be the product of the dislocation density and the volume of the metal.
Dislocation density = ![10^5\ \text{mm}^{-2}](https://tex.z-dn.net/?f=10%5E5%5C%20%5Ctext%7Bmm%7D%5E%7B-2%7D)
Volume of the metal = ![1000\ \text{mm}^3](https://tex.z-dn.net/?f=1000%5C%20%5Ctext%7Bmm%7D%5E3)
![10^5\times 1000=10^8\ \text{mm}\\ =10^5\ \text{m}](https://tex.z-dn.net/?f=10%5E5%5Ctimes%201000%3D10%5E8%5C%20%5Ctext%7Bmm%7D%5C%5C%20%3D10%5E5%5C%20%5Ctext%7Bm%7D)
![1\ \text{mile}=1609.34\ \text{m}](https://tex.z-dn.net/?f=1%5C%20%5Ctext%7Bmile%7D%3D1609.34%5C%20%5Ctext%7Bm%7D)
![\dfrac{10^5}{1609.34}=62.14\ \text{miles}](https://tex.z-dn.net/?f=%5Cdfrac%7B10%5E5%7D%7B1609.34%7D%3D62.14%5C%20%5Ctext%7Bmiles%7D)
The chain would extend ![62.14\ \text{miles}](https://tex.z-dn.net/?f=62.14%5C%20%5Ctext%7Bmiles%7D)
Dislocation density = ![10^{10}\ \text{mm}^{-2}](https://tex.z-dn.net/?f=10%5E%7B10%7D%5C%20%5Ctext%7Bmm%7D%5E%7B-2%7D)
Volume of the metal = ![1000\ \text{mm}^3](https://tex.z-dn.net/?f=1000%5C%20%5Ctext%7Bmm%7D%5E3)
![10^{10}\times 1000=10^{13}\ \text{mm}\\ =10^{10}\ \text{m}](https://tex.z-dn.net/?f=10%5E%7B10%7D%5Ctimes%201000%3D10%5E%7B13%7D%5C%20%5Ctext%7Bmm%7D%5C%5C%20%3D10%5E%7B10%7D%5C%20%5Ctext%7Bm%7D)
![\dfrac{10^{10}}{1609.34}=6213727.37\ \text{miles}](https://tex.z-dn.net/?f=%5Cdfrac%7B10%5E%7B10%7D%7D%7B1609.34%7D%3D6213727.37%5C%20%5Ctext%7Bmiles%7D)
The chain would extend ![6213727.37\ \text{miles}](https://tex.z-dn.net/?f=6213727.37%5C%20%5Ctext%7Bmiles%7D)
Explanation:
First of all get the input from the user, number of rows and number of columns where rows represents seat digit number and column represents the seat letter
rows is initialized to 1 to ensure that row starts at 1 or you can remove it then seat number will start from 0.
The first loop is used for digits starting from 1 to number of rows
The second loop is used for letters starting from 1 to number of columns
since rows and cols are not of the same type that's why we are converting the int type to string type
print(str(rows)+cols) counter will keep updating the columns A, B, C.....
rows= rows + 1 counter will keep updating the rows 1, 2, 3....
Code:
Please refer to the attached image.
Output:
Please enter the number of rows: 2
Please enter the number of columns: 3
1A
1B
1C
2A
2B
2C
Answer:
a)temperature=69.1C
b)3054Kw
Explanation:
Hello!
To solve this problem follow the steps below, the complete procedure is in the attached image
1. draw a complete outline of the problem
2. to find the temperature at the turbine exit use termodinamic tables to find the saturation temperature at 30kPa
note=Through laboratory tests, thermodynamic tables were developed, these allow to know all the thermodynamic properties of a substance (entropy, enthalpy, pressure, specific volume, internal energy etc ..)
through prior knowledge of two other properties such as pressure and temperature.
3. Using thermodynamic tables find the enthalpy and entropy at the turbine inlet, then find the ideal enthalpy using the entropy of state 1 and the outlet pressure = 30kPa
4. The efficiency of the turbine is defined as the ratio between the real power and the ideal power, with this we find the real enthalpy.
Note: Remember that for a turbine with a single input and output, the power is calculated as the product of the mass flow and the difference in enthalpies.
5. Find the real power of the turbine