Answer:
Attached below are the sketches
answer :
c) G(s) = 100 / ( s + 100 )
d) y'(t) + 100Y(s) = 100 X(s)
e) g(t) = e^-100t u(t)
Explanation:
a) Sketch the bode plot
The filter here is a low pass filter
b) Sketch the s-plane
attached below. pole ( s ) is at 100
c) write the transfer function of the filter
Transfer function ; G(s) = 100 / ( s + 100 )
d) write the differential equation
Y(s) / X(s) = 100 / s + 100
Y(s) [ s + 100 ] = 100 X(s)
= sY(s) + 100Y = 100 X(s)
∴ differential equation = y'(t) + 100Y(s) = 100 X(s)
e) write out the unforced transient response
g(t) = e^-100t u(t)
f) write out the frequency response
attached below
Answer:
In the line marked *, the strategy that was used was renaming a fraction
The expression de-c fills in the orange box.
Explanation:
just did those questions 2020egen
Answer:
Biomedical engineering or medical engineering is the application of engineering principles and design concepts to medicine and biology for healthcare purposes. BME is also traditionally known as "bioengineering", but this term has come to also refer to biological engineering
Explanation: