Pressure of argon = 546.8 kPa
Conversion factor: 1 atm = 101.325 kPa
Pressure of argon = 546.8 kPa x 1 atm/101.325 kPa = 5.4 atm
Moles of argon = 15.82
Volume of argon = 75.0 L
According to Ideal gas law,
PV = nRT
where P is the pressure, V is the volume , n is the number of moles, R is the universal gas constant, and T is the temperature
T = PV/nR = (5.4 atm x 75.0 L) / (15.82 x 0.0821 L.atm.mol⁻¹K⁻¹)
T = 311.82 K
Hence the temperature of the canister is 311.82 K.
1) Recording the change in pressure when heating an inflated tire
Explanation:
This happens because with an increase in temperatures, the kinetic energy of the gas in the tire increases. The increase in kinetic energy means the molecules move more rapidly. There is an increased rate of collisions between the gas molecules, and increased energy of the collisions, and between the gas molecules and inner walls of the tire hence the increased pressure. Pressure and temperatures and directly proportional s long as the volume of the gas is kept constant.
Answer:
Heres a picture of the periodic table.
Explanation:
Source(s):Science News for Students
Answer:-
H+ + OH- --> H2O
Explanation:-
The chemical equation is NaOH + HNO3 --> NaNO3 + H2O
Now for the ionic compounds
HNO3 --> H+ + NO3 -
NaOH--> Na+ + OH-
NaNO3 --> Na+ + NO3-
Water being covalent will remain as H2O,
Hence
HNO3 + NaOH--> NaNO3 + H2O
H+ + NO3 - + Na+ + OH- --> Na+ + No3 - + H2O.
Crossing out common terms
H+ + OH- --> H2O