Where's the image?
please enter a image below so I can help.
Answer:
H₂O + CO₂ → H₂CO₃
Option D is correct.
Law of conservation of mass:
According to this law, mass can neither be created nor destroyed in a chemical equation.
This law was given by French chemist Antoine Lavoisier in 1789. According to this law mass of reactant and mass of product must be equal, because masses are not created or destroyed in a chemical reaction.
Now we will apply this law to given chemical equations:
A) H₂ + O₂ → H₂O
There are two H and two O atoms present on left side while on right side only one O and two H atoms are present so mass in not conserved. This option is incorrect.
B) Mg + HCl → H₂ + MgCl₂
In this equation one Mg, one H and one Cl atoms are present on left side of equation while on right side two H, one Mg and two chlorine atoms are present. This equation also not follow the law of conservation of mass.
C) KClO₃ → KCl + O₂
There are one K, one Cl and three O atoms are present on left side of equation while on right side one K one Cl and two oxygen atoms are present. This equation also not following the law of conservation of mass.
D) H₂O + CO₂ → H₂CO₃
There are two hydrogen, one carbon and three oxygen atoms are present on both side of equation thus, mass remain conserved. This option is correct.
Answer:
Electrons are found in shells or orbitals that surround the nucleus of an atom. Protons and neutrons are found in the nucleus. They group together in the center of the atom.
Explanation:
-----
To determine the name of an anion, you take the name of its element and replace the end with "ide".
<h3>What is an anion?</h3>
An anion in chemistry is a negatively charged ion.
Anions are usually formed when a non-metallic atom gains electron(s).
An anion is usually named by taking the elemental name, removing the ending, and adding “ide.
Examples of anions are as follows:
- fluoride (F-)
- Chloride (Cl-)
- Iodide (I-)
Learn more about anions at: brainly.com/question/15578817
#SPJ1
Molecular clocks because the m<span>easure changes in DNA or proteins to indicate degrees of relationship among species.Molecular clocks, together with evidence from the fossil record, allows scientists to estimate how long ago various groups of organisms diverged evolutionarily from one another</span>