The kinematics for the vertical launch we can enter the initial velocity is 11.76 m / s
Given parameters
To find
Kinematics is the part of physics that establishes the relationships between the position, velocity, and acceleration of bodies.
In this case we have a vertical launch
y = y₀ + v₀ t - ½ g t²
Where y and y₀ are the final and initial positions, respectively, v₀ the initial velocity, g the acceleration of gravity (g = 9.8 m / s²) and t the time
With the ball in hand, its position is zero
0 = 0 + v₀ t - ½ g t²
v₀ t - ½ g t² = 0
v₀ = ½ g t
Let's calculate
v₀ = ½ 9.8 2.4
v₀ = 11.76 m / s
In conclusion using kinematics for the vertical launch we can enter the initial velocity is 11.76 m / s
Learn more about vertical launch kinematics here:
brainly.com/question/15068914
Answer:
Entropy is increasing. Entropy is decreasing.
Explanation:
The Entropy doesn't change.
Elastic potential energy is equal to the force times the distance of movement. Elastic potential energy = force x distance of displacement. Because the force is = spring constant x displacement, then the Elastic potential energy = spring constant x displacement squared.
Full moon!
when Earth is exactly between the Moon and Sun, Earth's shadow falls upon the surface of the Moon, dimming it and sometimes turning the surface red over the course of a few hours.
Increased by a factor of 4