Answer:
False only direction not weight.
Explanation:
Answer:
C. Equals the sum of all forms of energy contained within the system.
D. Equals the heat entering the system at constant volume.
E. Equals the heat entering the system plus the work done on the system
Explanation:
Internal energy is defined as the sum of internal kinetic energy and internal potential energy, that is, the energy contained within the system.
The first law of thermodynamics relates the change in the internal energy with the heat entering the system (Q) and work done on the system (W), with the following expression:

If the system is at constant volume the work done is zero. Therefore, the heat entering the system increases its internal energy:

Answer:
Bridget is transferring energy to the bicycle.
The bicycle is using energy to do work.
Bridget has kinetic energy.
The bicycle has potential energy.
The bicycle has mechanical energy.
Explanation:
Energy can be transformed from one form to another. A body possess kinetic energy due to virtue of its motion. Potential energy is possessed by a body due to virtue of its position. mechanical energy is the sum of potential energy and kinetic energy. Nuclear energy is produced when atoms split or two atoms fuse together.
When Bridget is riding bicycle up a hill. Energy involved is both kinetic energy due to motion and potential energy due to gain in height up the hill. Bridget is pedaling, hence he is transferring energy to the bicycle. Bridget is in motion along with the bicycle. Hence, both Bridget and Bicycle have kinetic energy and potential energy. We can say both have mechanical energy. Thus correct options are:
Bridget is transferring energy to the bicycle.
The bicycle is using energy to do work.
Bridget has kinetic energy.
The bicycle has potential energy.
The bicycle has mechanical energy.
Answer:
The current in the coil is 4.086 A
Explanation:
Given;
radius of the circular coil, R = 2.5 cm = 0.025 m
number of turns of the circular coil, N = 740 turns
magnetic field at the center of the coil, B = 0.076 T
The magnetic field at the center of the coil is given by;

where;
μ₀ is permeability of free space = 4 x 10⁻⁷ m/A
I is the current in the coil
R is radius of the coil
N is the number of turns of the coil
The current in the circular coil is given by

Therefore, the current in the coil is 4.086 A