Answer:
The temperature and pressure below which a supercritical fluid exists.
Explanation:
Critical point is a region on the phase diagram where fluid phases (liquids and gases) have the equal density.
This is caused by increased temperature and pressure of the fluid particles in a confided container. Supercritical fluids exist in a state above critical point.
I hope this explanation was clear.
M=D*V,
V=m/D
m=15 g
D=3 g/ml
V=15 g/3 g/ml=5 ml
Answer: it's easy just think about it:
Explanation:
weight: the weight of an object is the force acting on the object due to gravity.
mass: Mass is the amount of matter or substance that makes up an object.
in total: The mass of an object is a measure of the object's inertial property, or the amount of matter it contains. The weight of an object is a measure of the force exerted on the object by gravity, or the force needed to support it.
Happy to help!
Feel free to ask any questions!
Answer:
The answer to this is
The column of water in meters that can be supported by standard atmospheric pressure is 10.336 meters
Explanation:
To solve this we first list out the variables thus
Density of the water = 1.00 g/mL =1000 kg/m³
density of mercury = 13.6 g/mL = 13600 kg/m³
Standard atmospheric pressure = 760 mmHg or 101.325 kilopascals
Therefore from the equation for denstity we have
Density = mass/volume
Pressure = Force/Area and for a column of water, pressure = Density × gravity×height
Therefore where standard atmospheric pressure = 760 mmHg we have for Standard tmospheric pressure= 13600 kg/m³ × 9.81 m/s² × 0.76 m = 101396.16 Pa
This value of pressure should be supported by the column of water as follows
Pressure = 101396.16 Pa = kg/m³×9.81 m/s² ×h
∴
= 10.336 meters
The column of water in meters that can be supported by standard atmospheric pressure is 10.336 meters