The answer that would best complete the given statement above would be the term SUPERPOSITION. Here is the complete statement. <span>When two waves meet they combine according to the superposition principle. Hope this answers your question. Have a great day ahead!</span>
Explanation:
amazing that you learned a lot of great ideas on your summary business you well from to and as learned that they can do well with their lives for you in the past few they will be a child whose mass is the best thing) )for
Answer:

Explanation:
<u>Accelerated Motion
</u>
It refers to the motion of objects in which velocity is not constant over time. If the change of the velocity occurs at the same rate, then we say it's uniformly accelerated. Being
= initial speed,
= final speed, a= constant acceleration, x= distance traveled
Then, the scalar relation between them is

The aircraft needs to reach a liftoff speed of 53 m/s from rest (assumed) having only 420 meters to do so. We can compute the acceleration by solving for a



Here are the answers to the given question above.
<span>Relative dating uses laws or principles of stratigraphy and paleontology. These laws of relative dating are:
-</span><span>law of original horizontality
-</span><span>law of superposition
-</span><span>law of original lateral continuity
-</span><span>law of cross-cutting or intrusive relationships
Hope these are the answers that you are looking for.</span>
Answer:
630.75 j
Explanation:
from the question we have the following
total mass (m) = 54.5 kg
initial speed (Vi) = 1.4 m/s
final speed (Vf) = 6.6 m/s
frictional force (FF) = 41 N
height of slope (h) = 2.1 m
length of slope (d) = 12.4 m
acceleration due to gravity (g) = 9.8 m/s^2
work done (wd) = ?
- we can calculate the work done by the boy in pushing the chair using the law of law of conservation of energy
wd + mgh = (0.5 mVf^2) - (0.5 mVi^2) + (FF x d)
wd = (0.5 mVf^2) - (0.5 mVi^2) + (FF x d) - (mgh)
where wd = work done
m = mass
h = height
g = acceleration due to gravity
FF = frictional force
d = distance
Vf and Vi = final and initial velocity
wd = (0.5 x 54.5 x 6.9^2) - (0.5 x 54.5 x 1.4^2) + (41 x 12.4) - (54.5 X 9.8 X 2.1)
wd = 630.75 j