Answer:
The shear deformation is
.
Explanation:
Given that,
Shearing force F = 600 N
Shear modulus 
length = 0.700 cm
diameter = 4.00 cm
We need to find the shear deformation
Using formula of shear modulus



Put the value into the formula


Hence, The shear deformation is
.
Answer:Stirring.
Explanation:Stirring a solute into a solvent speeds up the rate of dissolving because it helps distribute the solute particles throughout the solvent. For example, when you add sugar to iced tea and then stir the tea, the sugar will dissolve faster.
The braking distance is given by 
Explanation:
When the driver of a car hits the pedal of the brakes, the car starts decelerating until it stops. Assuming the deceleration is constant, then the motion is a uniformly accelerated motion, so we can use the following suvat equation:

where
u is the initial speed of the car
v is the final speed of the car, which is zero because the car comes to rest:
v = 0
a is the acceleration of the car
s is the distance travelled by the car during the deceleration, so it is the braking distance
Therefore, re-arranging the equation for s, we find an expression for the braking distance:

Note that the sign of
is negative since the car is decelerating, therefore the final sign of
is positive.
Learn more about accelerated motion:
brainly.com/question/9527152
brainly.com/question/11181826
brainly.com/question/2506873
brainly.com/question/2562700
#LearnwithBrainly
Answer:
The power for circular shaft is 7.315 hp and tubular shaft is 6.667 hp
Explanation:
<u>Polar moment of Inertia</u>

= 0.14374 in 4
<u>Maximum sustainable torque on the solid circular shaft</u>

=
= 3658.836 lb.in
=
lb.ft
= 304.9 lb.ft
<u>Maximum sustainable torque on the tubular shaft</u>

= 
= 3334.8 lb.in
=
lb.ft
= 277.9 lb.ft
<u>Maximum sustainable power in the solid circular shaft</u>

= 
= 4023.061 lb. ft/s
=
hp
= 7.315 hp
<u>Maximum sustainable power in the tubular shaft</u>

= 
= 3666.804 lb.ft /s
=
hp
= 6.667 hp
Answer:
a. Decreases
b. Increases
c. Remains the same
d. Increases
Explanation:
a. Capacitance is given by c= Ak€/d
where A is conductivity plate with Area
K is a constant
€ is dielectric with permittivity.
d is the distance
b. Potential difference is given by
V = Ed, since, the electric field remains the
same, the potential diterence also increases with increase in distance.
Since the capacitance depends upon the distance, and all the other factors are kept constant, the capacitance decreases.
c. Electric field remains the same because charge on the
plate remains the same.
d. since electric field remains the same and capacitance decreases, the energy increases.
E= 1/2c * Q^2