1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
insens350 [35]
3 years ago
6

Why does the large number of hydrogen atoms in the universe suggest that other elements?

Physics
1 answer:
lidiya [134]3 years ago
4 0

Answer:

Explanation:

The abundance of the chemical elements is a measure of the occurrence of the chemical elements relative to all other elements in a given environment. Abundance is measured in one of three ways: by the mass-fraction (the same as weight fraction); by the mole-fraction (fraction of atoms by numerical count, or sometimes fraction of molecules in gases); or by the volume-fraction. Volume-fraction is a common abundance measure in mixed gases such as planetary atmospheres, and is similar in value to molecular mole-fraction for gas mixtures at relatively low densities and pressures, and ideal gas mixtures. Most abundance values in this article are given as mass-fractions.

For example, the abundance of oxygen in pure water can be measured in two ways: the mass fraction is about 89%, because that is the fraction of water's mass which is oxygen. However, the mole-fraction is about 33% because only 1 atom of 3 in water, H2O, is oxygen. As another example, looking at the mass-fraction abundance of hydrogen and helium in both the Universe as a whole and in the atmospheres of gas-giant planets such as Jupiter, it is 74% for hydrogen and 23–25% for helium; while the (atomic) mole-fraction for hydrogen is 92%, and for helium is 8%, in these environments. Changing the given environment to Jupiter's outer atmosphere, where hydrogen is diatomic while helium is not, changes the molecular mole-fraction (fraction of total gas molecules), as well as the fraction of atmosphere by volume, of hydrogen to about 86%, and of helium to 13%.[Note 1]

The abundance of chemical elements in the universe is dominated by the large amounts of hydrogen and helium which were produced in the Big Bang. Remaining elements, making up only about 2% of the universe, were largely produced by supernovae and certain red giant stars. Lithium, beryllium and boron are rare because although they are produced by nuclear fusion, they are then destroyed by other reactions in the stars.[1][2] The elements from carbon to iron are relatively more abundant in the universe because of the ease of making them in supernova nucleosynthesis. Elements of higher atomic number than iron (element 26) become progressively rarer in the universe, because they increasingly absorb stellar energy in their production. Also, elements with even atomic numbers are generally more common than their neighbors in the periodic table, due to favorable energetics of formation.

The abundance of elements in the Sun and outer planets is similar to that in the universe. Due to solar heating, the elements of Earth and the inner rocky planets of the Solar System have undergone an additional depletion of volatile hydrogen, helium, neon, nitrogen, and carbon (which volatilizes as methane). The crust, mantle, and core of the Earth show evidence of chemical segregation plus some sequestration by density. Lighter silicates of aluminum are found in the crust, with more magnesium silicate in the mantle, while metallic iron and nickel compose the core. The abundance of elements in specialized environments, such as atmospheres, or oceans, or the human body, are primarily a product of chemical interactions with the medium in which they reside.

You might be interested in
the displacement (in centimeters) of a particle moving back and forth along a straight line is given by the equation of motion s
12345 [234]

The average velocity or displacement of a particle for the first time interval is <u>Δs / Δt = 6 cm/s.</u>

Solution:

As we know that displacement is calculated in centimeters and the unit of time is second.

The average velocity for the first interval [1,2] is given

Δs / Δt = s (t2) - s (t) / t2 - t1

Δs / Δt = 2sin2  π  + 3cos 2 π -  ( 2sin π + 3cos π ) / 2 - 1

Δs / Δt = 2(0) + 3(1) - 2(0) - 3 (-1) / 1

Δs / Δt = 6 cm/s

Thus the average velocity or displacement of a particle for the first time interval is Δs / Δt = 6 cm/s

If you need to learn more about displacement click here:

brainly.com/question/28370322

#SPJ4

The complete question is:

The displacement of a particle moving back and forth along a line is given by the following equation s(t) = 2sin π t + 3cos π t. Estimate the instantaneous velocity of the particle when t = 1

4 0
1 year ago
A(n) _______ is a pure substance that can't be broken down into simpler substances by chemical or physical means. A. element
Lyrx [107]
An element is a pure substance that cant be broken down into simpler substances by chemical or physical means. hope it helps :)
3 0
3 years ago
In a liquid with a density of 1500 kg/m3, longitudinal waves with a frequency of 410 Hz are found to have a wavelength of 7.80 m
ahrayia [7]

Answer:

The bulk modulus of the liquid is 1.534 x 10¹⁰ N/m²

Explanation:

Given;

density of the liquid, ρ = 1500 kg/m³

frequency of the wave, F = 410 Hz

wavelength of the sound, λ = 7.80 m

The speed of the wave is calculated as;

v = Fλ

v = 410 x 7.8

v = 3,198 m/s

The bulk modulus of the liquid is calculated as;

V = \sqrt{\frac{B}{\rho} } \\\\V^2 = \frac{B}{\rho}\\\\B = V^2 \rho\\\\B = (3,198 \ m/s)^2 \times 1500 \ kg/m^3\\\\B = 1.534 \ \times 10^{10} \ N/m^2

Therefore, the bulk modulus of the liquid is 1.534 x 10¹⁰ N/m²

5 0
3 years ago
A physicist drives through a stop light. When he is pulled over, he tells the police officer that the Doppler shift made the red
Alik [6]

Answer:

Speed of physicist car is 0.036c or 1.08 x 10⁷ m/s .

Explanation:

Doppler Effect is defined as the change in frequency or wavelength of the wave as the source or/and observer moving away or towards each other.

In this case, the Doppler effect equation in terms of wavelength is :

\lambda_{s} = \lambda_{o}\sqrt{\frac{1-\frac{v}{c} }{1+\frac{v}{c} } }       ......(1)

Here \lambda_{s} is source wavelength, \lambda_{o} is observed wavelength, v is speed of the observer and c is the speed of light.

Given :

Source wavelength, \lambda_{s} = 660 nm = 660 x 10⁻⁹ m

Observed wavelength, \lambda_{0} = 555 nm = 555 x 10⁻⁹ m

Substitute these values in the equation (1).

555\times10^{-9} } = 660\times10^{-9} \sqrt{\frac{1-\frac{v}{c} }{1+\frac{v}{c} } }

\sqrt{\frac{1-\frac{v}{c} }{1+\frac{v}{c} } } = 0.84

{\frac{1-\frac{v}{c} }{1+\frac{v}{c} } } = (0.84)^{2} = 0.7056

1-\frac{v}{c}=0.7056+0.7056\frac{v}{c}

\frac{v}{c}=\frac{0.2944}{8.056}

v = 0.036c=0.036\times3\times10^{8}

v = 1.08 x 10⁷ m/s  

8 0
3 years ago
To obtain the same resistance force, a greater force must be exerted in a machine of lower efficiency than in a machine
Sindrei [870]

Answer: True.

Explanation:

A resistance force is also known as friction. And the efficiency of a machine is affected by friction.

A machine of lower efficiency has higher magnitude of friction than a machine of higher efficiency.

Therefore, To obtain the same resistance force, a greater force must be exerted in a machine of lower efficiency than in a machine of higher efficiency. This is true

7 0
3 years ago
Other questions:
  • A car of mass 998 kilograms moving in the positive y–axis at a speed of 20 meters/second collides on ice with another car of mas
    10·1 answer
  • Sandy is whirling a ball attached to a string in a horizontal circle over his head. If Sandy doubles the speed of the ball, what
    14·1 answer
  • Two vectors, X and Y, form a right angle. Vector X is 48 inches long and vector Y is 14 inches long. the length of the resultant
    10·1 answer
  • Tory has a mass of 40kg. She sleds down a hill that has a slope of 25 degrees. what is the component of her weight that is along
    9·1 answer
  • How many legs a cow has​
    10·1 answer
  • A hard-boiled egg of mass 46.0 gg moves on the end of a spring with force constant 25.6 N/mN/m . The egg is released from rest a
    11·1 answer
  • To build muscle you must do what ?
    11·2 answers
  • Two objects that are not initially in thermal equilibrium are placed in close contact. After a while, the temperature of the cod
    9·1 answer
  • A wire 0.50 m long carrying a current of 16.0 A is at right angles to a 0.20 T magnetic field. How strong a force acts on the wi
    11·1 answer
  • In the reaction _S+302 +2SO3, what coefficient should be placed in front of the S to balance the reaction?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!