Answer:
3.3 moles of H₂O.
Explanation:
We'll begin by writing the balanced equation for the reaction. This is illustrated below:
4NH₃ + 5O₂ —> 6H₂O + 4NO
From the balanced equation above,
4 moles of NH₃ reacted to produce 6 moles of H₂O.
Finally, we shall determine the number of mole of H₂O produced by the reaction of 2.2 moles of NH₃. This can be obtained as follow :
From the balanced equation above,
4 moles of NH₃ reacted to produce 6 moles of H₂O.
Therefore, 2.2 moles of NH₃ will react to produce = (2.2 × 6)/4 = 3.3 moles of H₂O.
Thus, 3.3 moles of H₂O were obtained from the reaction.
The rate constant is mathematically given as
K2=2.67sec^{-1}
<h3>What is the Arrhenius equation?</h3>
The rate constant for a particular reaction may be calculated with the use of the Arrhenius equation. This constant can be stated in terms of two distinct temperatures, T1 and T2, as follows:

Therefore
KT1= 0.0110^{-1}
T1= 21+273.15
T1= 294.15K
T2= 200
T2=200+273.15
T2= 473.15K
Ea= 35.5 Kj/Mol
Hence, in j/mol R Ea is
Ea=35.5*1000 j/mol R

K2/0.0110 =e^(5.492)
K2/0.0110 =242.74
K2= 242.74*0.0110
K2=2.67sec^{-1}
In conclusion, rate constant
K2=2.67sec^{-1}
Read more about rate constant
brainly.com/question/20305871
#SPJ1
The mass of oxygen reacted/required in this reaction is obtained as 48g.
<h3>What is stoichiometry?</h3>
The term stoichiometry has to do with mass- volume or mass - mole relationship which ultimately depends on the balanced reaction equation.
Now, we have the reaction; S + O2 ------>SO2
If 1 mole of sulfur dioxide contains 22.4 L
x moles of sulfur dioxide contains 33.6L
x = 1.5 moles of sulfur dioxide.
Since the reaction is 1:1, the number if moles of oxygen required/reacted is 1.5 moles.
Mass of oxygen required/reacted = 1.5 moles * 32 g/mol = 48g
Learn more anout stoichiometry: brainly.com/question/9743981
Answer:
You may, but it is too risky.
Even though you are being cautious around using electric equipment around water, you'll never know what can happen. You might accidentally drop that piece of electrical equipment you are using into the water. Water can be splashed around by someone or something without you noticing it and it may affect the object you are using. Sometimes, if water comes in contact with an electrical object, it may cause you electric shocks or the equipment you are using has a chance of exploding and may hurt you. You can guarantee that waterproof electrical equipment is safe to use, but it is better not to risk it too much.
Answer:
V₂ ≈416.7 mL
Explanation:
This question asks us to find the volume, given another volume and 2 temperatures in Kelvin. Based on this information, we must be using Charles's Law and the formula. Remember, his law states the volume of a gas is proportional to the temperature.
where V₁ and V₂ are the first and second volumes, and T₁ and T₂ are the first and second temperature.
The balloon has a volume of 600 milliliters and a temperature of 360 K, but the temperature then drops to 250 K. So,
- V₁= 600 mL
- T₁= 360 K
- T₂= 250 K
Substitute the values into the formula.
- 600 mL /360 K = V₂ / 250 K
Since we are solving for the second volume when the temperature is 250 K, we have to isolate the variable V₂. It is being divided by 250 K. The inverse o division is multiplication, so we multiply both sides by 250 K.
- 250 K * 600 mL /360 K = V₂ / 250 K * 250 K
- 250 K * 600 mL/360 K = V₂
The units of Kelvin cancel, so we are left with the units of mL.
- 250 * 600 mL/360=V₂
- 416.666666667 mL= V₂
Let's round to the nearest tenth. The 6 in the hundredth place tells us to round to 6 to a 7.
The volume of the balloon at 250 K is approximately 416.7 milliliters.