Answer:
The Acceleration will increase
Explanation:
Newton's Second Law of motion: It states that the rate of change of momentum is directly proportional to the applied force and takes places along the direction of the force.
It can be expressed mathematically as,
F ∝ m(v-u)/t
Where (v-u)/t = a
F = kma.
F = force, m = mass of the body, a = acceleration, k = constant of proportionality which tend to unity for a unit force, a unit mass, and a unit acceleration.
Therefore,
F = ma.
From the equation above,
If the net force acting on a body increase, while the mass of the body remains constant, the acceleration will also increase.
Answer:
184 feets
Explanation:
Given the data:
time (sec) __ velocity (ft/sec)
0 __________30
1 __________ 54
2 __________56
3 __________34
4 __________ 8
5 __________ 2
6 __________22
Using left end approximation:
(0,1) ___ f(0) = 30
(1,2) ___ f(1) = 54
(2,3) ___f(2) = 56
(3,4) ___f(3) = 34
(4,5) ___f(4) = 8
(5,6) __ f(5) = 2
Hence, the Total distance traveled during the 6 second interval is:
Change ; dT = 1
1 * (30 + 54 + 56 + 34 + 8 + 2) = 184
Answer:
A. 231.77 J
B. 5330.71 J
C. 46 donuts
Explanation:
A. To lift the barbell once, she will have to extend it the full length of her arm. The work done will then be:
W = F * d
Where the force is the weight of the barbell.
F = m * g
Hence, the work done in lifting the barbell is:
W = m * g * d
W = 43 * 9.8 * 0.55
W = 231.77 J
B. If she does 23 repetitions, the total energy she expend will be equal to the Potential energy when the barbell is lifted multiplied by 23:
E = 23 * m * g * d
E = 23 * 231.77
E = 5330.71 J
C. 1 Joule = 4.184 calories
5330.71 Joules = 5330.71 * 4.184 = 22303.69
If 1 donut contains 490 calories, the number of donuts she will need will be:
N = 22303.69/490 = 45.5 donuts or 46 donuts
Answer:
I know someone anwsered but it would be 400M
Explanation:
i initial velocity (u)=10m/s
acceleration (a)=0
time taken (t) =40s
then distance (s)=u t +1/2 a t^2
s= u t +0 (as a is 0)
s= 10 x 40
s= 400M
The centripetal acceleration is 
Explanation:
For an object in uniform circular motion, the centripetal acceleration is given by

where
v is the speed of the object
r is the radius of the circle
The speed of the object is equal to the ratio between the length of the circumference (
) and the period of revolution (T), so it can be rewritten as

Therefore we can rewrite the acceleration as

For the particle in this problem,
r = 2.06 cm = 0.0206 m
While it makes 4 revolutions each second, so the period is

Substituting into the equation, we find the acceleration:

Learn more about centripetal acceleration:
brainly.com/question/2562955
#LearnwithBrainly