Answer:
equation of motion for the mass is x(t) = e^αt ( C1 cos √{α² - ω²} t + C2 sin √{α² - ω²} t )
Explanation:
Given data
mass = 3 slugs = 3 * 32.14 = 96.52 lbs
constant k = 9 lbs/ft
Beta = 6lbs * s/ft
mass is pulled = 1 ft below
to find out
equation of motion for the mass
solution
we know that The mass is pulled 1 ft below so
we will apply here differential equation of free motion i.e
dx²/dt² + 2 α dx/dt + ω² x =0 ........................1
here 2 α = Beta / mass
so 2 α = 6 / 96.52
α = 0.031
α² = 0.000961 ...............2
and
ω² = k/mass
ω² = 9 /96.52
ω² = 0.093 ..................3
we can say that from equation 2 and 3 that α² - ω² = -0.092239
this is less than zero
so differential equation is
x(t) = e^αt ( C1 cos √{α² - ω²} t + C2 sin √{α² - ω²} t )
equation of motion for the mass is x(t) = e^αt ( C1 cos √{α² - ω²} t + C2 sin √{α² - ω²} t )
<span>Don't know what you mean by Earths Spheres. The Earth is a sphere -- singular. And it is made up of LOTS of matter</span>
The answer is C adding more mass(Tape) to the balls(No homo) would increase the gravitational pull.
Answer:
2.4 m
Explanation:
Consider the motion along the vertical direction
= initial position of ball above the ground = 4.5 m
= time taken by the ball to hit the smokestack = 0.65 s
= initial velocity of the ball along vertical direction
= acceleration due to gravity = - 9.8 m/s²
= position of ball at the time of hitting the smokestack
Using the kinematics equation

inserting the above values
