The concentration in molarity of a solution containing 10 moles of copper(ii) nitrate in 5.0 Liters of solution is calculated using the following formula
molarity = number of moles/ volume in liters
= 10/5.0 = 2 M
Mass of solute = 25.8 g
mass solution = 212 g
% =( mass of solute / mass solution ) x 100
% = ( 25.8 / 212 ) x 100
% = 0.122 x 100
= 12.2 %
Percentage Yield = (Actual Yield ÷ Theoretical Yield) × 100
The Actual Yield is given in the question as 21.2 g of NaCl. However, in order to find the theoretical yield, you have to write a balanced equation and use the mole ratio to calculate the mass of NaCl that would be produced.
Balanced Equation: CuCl + NaNO₃ → NaCl + CuNO₃
Moles of CuCl = Mass of CuCl ÷ Molar Mass of CuCl
= 31.0 g ÷ (63.5 + 35.5)g/mol
= 0.31 mol
the mole ratio of CuCl to NaCl is 1 : 1,
∴ if moles of CuCl = 0.31 mol,
then moles of NaCl = 0.31 mol
Now, Mass of NaCl = Moles of NaCl × Molar Mass of NaCl
= 0.31 mol × (23 + 35.5) g/mol
= 18.32 g
⇒ the THEORETICAL Yield of NaCl, in this case, is 18.32 g.
Now, since Percentage Yield = (Actual Yield ÷ Theoretical Yield) × 100
⇒ Percentage Yield of NaCl = (21.2g ÷ 18.32g) × 100
= 115.7 %
NOTE: Typically, the percentage yield of a reaction is less than 100%, however in a case where the mass of the substance is weighed with impurities, then that mass may be in excess of 100% as seen here.
Answer:
Heat, temperature, and thermal energy are related because they all work with each other.
Explanation:
First of all, everything start's off with temperature. It starts off low. But when heat is added to it, it rises and the temperature goes up. This causes thermal energy to the objects touching it. The hotter it is the faster the particles move and the more kinetic energy they have.
Answer:
ammonia
Explanation:
Nitrogen fertilizers contain N in the forms of ammonium, nitrate and urea. Upon application to the soil, urea-N rapidly hydrolyzes to ammonia, thus it shares similar characteristics as ammonia-based N fertilizers.