Answer:
After the transfer the pressure inside the 20 L vessel is 0.6 atm.
Explanation:
Considering O2 as an ideal gas, it is at an initial state (1) with V1 = 3L and P1 = 4 atm. And a final state (2) with V2 = 20L. The temperature remain constant at all the process, thus here applies the Boyle-Mariotte law. This law establishes that at a constant temperature an ideal gas the relationship between pressure and volume remain constant at all time:

Therefore, for this problem the step by step explanation is:

Clearing P2 and replacing

D. Protons, Atomic number is the number of protons in an atom.
Polyethene is a polymer composed of repeating units of the monomer ethene.
The properties of polyethene are as follows:
- density- ranges 0.857 g/cm3 to 0.975 g/cm3.
- specific heat capacity is 1.9 kJ/kg.
- melting temperature is approximately 110 °C.
<h3>What are polymers?</h3>
Polymers are large macromolecules consisting of long repeating chains of smaller molecules known as monomers.
An example of a polymer is polyethene composed of repeating units of the monomer ethene.
The density of polyethylene ranges 0.857 g/cm3 to 0.975 g/cm3.
The specific heat capacity of polyethene is 1.9 kJ/kg.
The melting temperature of polyethene is approximately 110 °C.
Learn more about polyethene at: brainly.com/question/165779
Answer:
The eruption of Mount Tambora eventually reduced the average global temperature by as much as 3 °C.
Explanation:
The Mount Tambora eruption was the largest and most destructive volcanic event in recorded history, expelling as much as 150 cubic km (roughly 36 cubic miles) of ash, pumice, and other rock, and aerosols—including an estimated 60 megatons of sulfur—into the atmosphere. As that material mixed with atmospheric gases, it prevented substantial amounts of sunlight from reaching Earth’s surface, eventually reducing the average global temperature by as much as 3 °C.