Answer is: volume will be 6,7 L.
Boyle's Law: the pressure volume law - <span> volume of a given amount of gas held varies inversely with the applied pressure when the temperature and mass are constant.
p</span>₁V₁ = p₂V₂.
90 kPa · 5 L = 67 kPa · V₂.
V₂ = 90 kPa · 5 L / 67 kPa.
V₂ = 6,7 L, but same amount of oxygen.
The action or process of adhering to a surface or object.
Answer:
8.3
Explanation:
pH is the measure of the H+ or H30 (they r the same thing) ions in a solution. it is equal to -log[H+]. [H+]= Molar concentration of H+ ions.
Answer:
Answer of question a is 345J.
Explanation:
In question a following is given in data:
-mass of iron (m) = 10.0 g
-temperature (ΔT) = final temperature- initial temperature= 100-25= 75 degree Celsius
-Specific Heat capacity of iron (c)= 0.46J/g°C.
Heat (Q)=?
Solution:
Formula for Heat is :
Q=m x c x ΔT
Q= 10 x 0.46 x 75
Q= 345 J.
so, 345 joules of heat is needed to increase the temperature of 10 grams of iron.
- From the above formula all other questions can easily be solved from the same procedure.
Answer:

Explanation:
The question will be easier to solve if we interpret it as, " How long will it take until one-fourth of a sample of the element remains,?"
The half-life of the element is the time it takes for half of it to decay.
After one half-life, half (50 %) of the original amount will remain.
After a second half-life, half of that amount (25 %) will remain, and so on.
We can construct a table as follows:

