Calculate first the number of moles of ethylene glycol by dividing the mass by the molar mass.
n = (6.21 g ethylene glycol) / 62.1 g/mol
n = 0.1 mol
Then, calculate the molality by dividing the number of moles by the mass of water (in kg).
m = 0.1 mol/ (0.025 kg) = 4m
Then, use the equation,
Tb,f = Tb,i + (kb)(m)
Substituting the known values,
Tb,f = 100°C + (0.512°C.kg/mol)(4 mol/kg)
<em>Tb,f = 102.048°C</em>
Answer: I think the answer is C)
Explanation:
Protons and neutrons give the ATOMIC MASS
To solve for the enthalpy of reaction, we apply the Hess's Law.
ΔHrxn = ∑(ν×Hf of products) - ∑(ν×Hf of reactants)
where
v is the stoichiometric coefficient determined from the balanced reaction
Hf is the standard heat of formation; these are empirical values:
*For CH₄: Hf = <span>−74.87 kJ/mol
*For O</span>₂: Hf = 0
*For CO₂: <span>-393.5 kJ/mol
*For H</span>₂O: <span>-241.82 kJ/mol
</span>ΔHrxn = [(2*-241.82 kJ/mol)+(1*-393.5 kJ/mol)] - [(1*−74.87 kJ/mol)+(2*0 kJ/mol)] =<em> -802.27 kJ/mol</em>