Answer:
0.0554 moles of NaCl are produced from the reaction of 1.67*10²² molecules of Na₂CO₃ with excess HCl.
Explanation:
The balanced reaction is:
Na₂CO₃ + 2 HCl → 2 NaCl + CO₂ + H₂O
By reaction stoichiometry (that is, the relationship between the amount of reagents and products in a chemical reaction), the following amounts of each compound participate in the reaction:
- Na₂CO₃: 1 mole
- HCl: 2 moles
- NaCl: 2 moles
- CO₂: 1 mole
- H₂O: 1 mole
On the other hand, Avogadro's Number is called the number of particles that make up a substance (usually atoms or molecules) and that can be found in the amount of one mole of said substance. Its value is 6.023*10²³ particles per mole. Avogadro's number applies to any substance.
In this case, you can apply the following rule of three: if 6.023*10²³ molecules of Na₂CO₃ are contained in 1 mole, 1.67*10²² molecules will be contained in how many moles?

amount of moles= 0.0277 moles
In this case, you can apply the following rule of three: if by stoichiometry 1 mole of Na₂CO₃ produces 2 moles of NaCl, 0.0277 moles of Na₂CO₃ will produce how many moles of NaCl?

amount of moles of NaCl= 0.0554 moles
<u><em>0.0554 moles of NaCl are produced from the reaction of 1.67*10²² molecules of Na₂CO₃ with excess HCl.</em></u>
Answer:
c. An ionic bond is much stronger than most covalent bonds
Explanation:
Ionic bonds are interatomic bonds that forms as a result of electrostatic attraction between two ions. For an ionic bond to be formed, one atom must have lost or gained electron from another that is transferring it. Ionic bonds typically form between atoms whose electronegativity differences are far apart.
Ionic bonds are usually stronger than other types of bonds due to the electrostatic attraction between ions.
One very distinct feature about ionic compounds is that they are conductors of electricity in either molten or aqueous. At room temperature, they are solids and contains no mobile ions.
Answer:
Tetrahedral
Explanation:
For the repulsion of the free electron pair theory, the shape of a molecule will be to repel the bonds and the free electrons on the central atom. In a molecule of carbon tetrachloride, the central atom (C) has no free electrons, so, the shape that repels better the charge is tetrahedral, as shown below.
Answer:
A
Explanation:
The group number of an element is equal to the number of electrons the outermost shell (or highest energy level) contains
3 elements are present in HCOOH - hydrogen, oxygen, and carbon.