Answer:

Explanation:
The heaviside function is defined as:

so we see that the Heaviside function "switches on" when
, and remains switched on when 
If we want our heaviside function to switch on when
, we need the argument to the heaviside function to be 0 when 
Thus we define a function f:

The
term inside the heaviside function makes sure to displace the function 5 units to the right.
Now we just need to add a scale up factor of 240 V, because thats the voltage applied after the heaviside function switches on. (
when
, so it becomes just a 1, which we can safely ignore.)
Therefore our final result is:

I have made a sketch for you, and added it as attachment.
Answer:
0.278 m/s
Explanation:
We can answer the problem by using the law of conservation of momentum. In fact, the total momentum before the collision must be equal to the total momentum after the collision.
So we can write:

where
m = 0.200 kg is the mass of the koala bear
u = 0.750 m/s is the initial velocity of the koala bear
M = 0.350 kg is the mass of the other clay model
v is their final combined velocity
Solving the equation for v, we get

Answer:
force is that push or pull of the body that change or tends to change the state of rest or uniform motion in a straight line.
Explanation:
hope it is helpful to u
Answer: 3.92 N.
Explanation:
Your box weighs 400g, or 0.4kg. In order to lift it, you need to overcome the force of gravity. F = ma, and acceleration due to gravity is -9.8 m/s^2. So gravity acts on the box with a force of 0.4 kg * -9.8 m/s^2 = -3.92 N. A force of +3.92 N is required to overcome this.