Answer:
0.2 m/s
Explanation:
given,
mass of astronaut, M = 85 Kg
mass of hammer, m = 1 Kg
velocity of hammer , v =17 m/s
speed of astronaut, v' = ?
initial speed of the astronaut and the hammer be equal to zero = ?
Using conservation of momentum
(M + m) V = M v' + m v
(M + m) x 0 = 85 x v' + 1 x 17
85 v' = -17
v' = -0.2 m/s
negative sign represent the astronaut is moving in opposite direction of hammer.
Hence, the speed of the astronaut is equal to 0.2 m/s
Answer:
the question this morning
Explanation:
90+70 look than
A. Use the thin lens equation to determine the image distance from the lens. Is the correct answer because I have no idea why
Permanent magnet. An induced magnet would be created when a piece of iron (for example) is in contact with a magnet. Temporary magnets would be something like an electromagnet. Bar magnets are permanently magnetic unless we heat them or hammer them to cause their domains to loose alignment.
Answer:
115, 80, 15m
Explanation
t1 = 14s
t2 = 18s
change in time = 4s (18-14)
r(final) = r(initial) + (average velocity) x (change in time)
multiply the average velocity with the change in time
= (4, 0, -3) x 4 = 16, 0, -12
now we'll add this value to the initial position of the car
(99, 80, 27)m + (16, 0, -12)m = (115, 80, 15)m