Answer:
a) 46.5º b) 64.4º
Explanation:
To solve this problem we will use the laws of geometric optics
a) For this part we will use the law of reflection that states that the reflected and incident angle are equal
θ = 43.5º
This angle measured from the surface is
θ_r = 90 -43.5
θ_s = 46.5º
b) In this part the law of refraction must be used
n₁ sin θ₁ = n₂. Sin θ₂
sin θ₂ = n₁ / n₂ sin θ₁
The index of air refraction is n₁ = 1
The angle is this equation is measured between the vertical line called normal, if the angles are measured with respect to the surface
θ_s = 90 - θ
θ_s = 90- 43.5
θ_s = 46.5º
sin θ₂ = 1 / 1.68 sin 46.5
sin θ₂ = 0.4318
θ₂ = 25.6º
The angle with respect to the surface is
θ₂_s = 90 - 25.6
θ₂_s = 64.4º
measured in the fourth quadrant
no, work is = force * distance or displacement
This implies that stopping distance and impact force grow as a function of speed. The best ways to improve manoeuvrability and lessen crash severity are to drive at an appropriate pace and to slow down as soon as you spot dangers in front of you.
Keep in mind that stopping distance increases with speed; at 50 mph, it is four times longer than at 25 mph, and at 75 mph, the force of impact is nine times greater.
<h3>What is the impact of speed on kinetic energy ?</h3>
When your car expends or absorbs energy to speed up or slow down, you may feel a pull or a jolt, called impulse. Impulse increases as the energy or force increases, and increases as the duration of the force decreases. You'll feel a harder jolt if you speed up or slow down suddenly.
- Consider: coming to a stop from 60 mph in ten seconds doesn't hurt you or your vehicle because the force of this event is spread out over a long time. But if you hit a wall and come to a stop in just half a second, you'll feel twenty times the impulse, causing severe damage.
Learn more about Kinetic energy here:
brainly.com/question/25959744
#SPJ4
Answer:
5
Explanation:
If you straighten out the line, it touches the 5, which makes the length 5