To solve this question, we use the wave equation which is:
C=f*λ
where:
C is the speed;
f is the frequency;
λ is the wavelength
So in this case, plugging in our values in the problem. This will give us:
C = 261.6Hz × 1.31m
= 342.696 m/s is the answer.
Answer:
a)15 N
b)12.6 N
Explanation:
Given that
Weight of block (wt)= 21 N
μs = 0.80 and μk = 0.60
We know that
Maximum value of static friction given as
Frs = μs m g = μs .wt
by putting the values
Frs= 0.8 x 21 = 16.8 N
Value of kinetic friction
Frk= μk m g = μk .wt
By putting the values
Frk= 0.6 x 21 = 12.6 N
a)
When T = 15 N
Static friction Frs= 16.8 N
Here the value of static friction is more than tension T .It means that block will not move and the value of friction force will be equal to the tension force.
Friction force = 15 N
b)
When T= 35 N
Here value of tension force is more than maximum value of static friction that is why block will move .We know that when body is in motion then kinetic friction will act on the body.so the value of friction force in this case will be 12.6 N
Friction force = 12.6 N
Answer:
r1 = 5*10^10 m , r2 = 6*10^12 m
v1 = 9*10^4 m/s
From conservation of energy
K1 +U1 = K2 +U2
0.5mv1^2 - GMm/r1 = 0.5mv2^2 - GMm/r2
0.5v1^2 - GM/r1 = 0.5v2^2 - GM/r2
M is mass of sun = 1.98*10^30 kg
G = 6.67*10^-11 N.m^2/kg^2
0.5*(9*10^4)^2 - (6.67*10^-11*1.98*10^30/(5*10^10)) = 0.5v2^2 - (6.67*10^-11*1.98*10^30/(6*10^12))
v2 = 5.35*10^4 m/s
Cccccccvvvvvcjjjjjjjjjjkllk ki e
Answer:
For the complete question provided in explanation, if the elevator moves upward, then the apparent weight will be 1035 N. While for downward motion the apparent weight will be 435 N.
Explanation:
The question is incomplete. The complete question contains a velocity graph provided in the attachment. This is the velocity graph for an elevator having a passenger of 75 kg.
From the slope of graph it is clear that acceleration at t = 1 sec is given as:
Acceleration = a = (4-0)m/s / (1-0)s = 4 m/s^2
Now, there are two cases:
1- Elevator moving up
2- Elevator moving down
For upward motion:
Apparent Weight = m(g + a)
Apparent Weight = (75 kg)(9.8 + 4)m/s^2
<u>Apparent Weight = 1035 N</u>
For downward motion:
Apparent Weight = m(g - a)
Apparent Weight = (75 kg)(9.8 - 4)m/s^2
<u>Apparent Weight = 435 N</u>