1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Rudiy27
3 years ago
5

A hot-air balloonist, rising vertically with a constant velocity of magnitude v = 5.00 m/s , releases a sandbag at an instant wh

en the balloon is a height h = 40.0 m above the ground (Figure 1) . After it is released, the sandbag is in free fall. For the questions that follow, take the origin of the coordinate system used for measuring displacements to be at the ground, and upward displacements to be positive.
A) Compute the position of the sandbag at a time 1.05 s after its release.
B)Compute the velocity of the sandbag at a time 1.05 s after its release.
c) How many seconds after its release will the bag strike the ground?

Physics
2 answers:
lutik1710 [3]3 years ago
7 0
<span>Data:

Initial velocity upward: Vo = 5.00 m/s ,
Initial position: h = 40.0 m above the ground

Type of motion: free fall.

A) Compute the position of the sandbag at a time 1.05 s after its release.

Equation: y = h + Vo*t - g*(t^2) / 2

y = 40.0 m + 5.00 m/s * 1.05s - (9.8 m/s^2) * (1.05 s)^2 / 2 = 39.8 m

B)Compute the velocity of the sandbag at a time 1.05 s after its release.

Equation: Vf = Vo - g*t

=> Vf = 5.00 m/s - (9.8m/s^2) * (1.05 s) = - 5.29 m/s


Negative sign means that the sandbag is going down.

c) How many seconds after its release will the bag strike the ground?

Equation:

y = yo + Vo*t - g*(t^2) / 2

0 = 40.0 + 5.00t - 4.9 t^2

=> 4.9 t^2 - 5t - 40 = 0

Use the quadratic formula and you get: t = 3.41 s
</span>
Ber [7]3 years ago
6 0

(a). Position of sandbag at time 1.05\text{ s} after its release is \boxed{39.84\text{ m}} above the ground.

(b). Velocity of the sandbag after time 1.05\text{ s} is \boxed{5.3\text{ m/s}}.

(c). The time taken after release the bag to strike the ground is \boxed{3.41\text{ s}}.

Further explanation:

Here, all the actions performed is under free fall. So, we will use the kinematic equations of motion for free falling body.

Given:

The velocity of rising of hot air balloon is 5\text{ m/s}.

Height of hot air balloon when sandbag released is 40\text{ m}.

Calculation:

Part (a)

Position of sandbag at time 1.05\text{ s} after its release.

When sandbag released the hot air balloon was rising up with the velocity of 5\text{ m/s}.

So, initial velocity of sandbag will be 5\text{ m/s} in upward direction.

So, the time taken by the sand bag to reach at its top position is given by,

\boxed{v = u - gt}                                                     …… (1)

Here, v is the final velocity, u is the initial velocity, g is the acceleration due to gravity and negative sign is due upward motion of sandbag, t is the time required to reach at top position.

Substitute values for v and u in equation (1).

\begin{aligned}0&=5-9.8t\\9.8t&=5\\t&=0.51\text{ s}\\\end{aligned}

So, the distance travel by sandbag to top position can be calculated as,

\boxed{{v^2}={u^2}-2g{s_1}}

Substitute values for v and u in above equation.

\begin{aligned}{0^2}&={5^2}-2\times9.8\times{s_1}\\19.6{s_1}&=25\\{s_1}&=1.27\text{ m}\\\end{aligned}

After that sandbag will start falling.

The time remain from the given time is,

\begin{aligned}{t_1}&=1.05-0.51\\{t_1}&=0.54\text{ s}\\\end{aligned}

The distance travel by sandbag in 0.54\text{ s} in downward direction can be calculated as,

Substitute 0 for u and 0.54\text{ s} for t in above equation.

\begin{aligned}{s_2}&=0\times0.54+\frac{1}{2}\times9.8{\left({0.54}\right)^2}\\&=1.43\text{ m}\\\end{aligned}

So, the position of the sandbag after 1.05\text{ s} from the ground can be calculated as,

\begin{aligned}h&=40+{s_1}-{s_2}\\&=40+1.27-1.43\\&=39.84\text{ m}\\\end{aligned}

Part (b)

Velocity of the sandbag after time 1.05\text{ s}.

The velocity of the sandbag after time t can be calculated as,

\boxed{v=u+gt}

Substitute the values for u and t in above equation.

\begin{aligned}v&=0+9.8\times0.54\\&=5.3\text{ m/s}\\\end{aligned}

Thus, the velocity of the sandbag after time 1.05\text{ s} is \boxed{5.3\text{ m/s}}.

 

Part (c)

The time taken after release the bag to strike the ground.

The total distance the top most position of the bag and the ground is,

\begin{aligned}S&=40+{s_1}\\&=40+1.27\\&=41.27\text{ m}\\\end{aligned}

Now, time taken by the bag to strike the ground from its top most position,

\boxed{S=ut+\dfrac{1}{2}g{t_2}^2}

 

Substitute 41.27{\text{ m}} for S and 0 for u in above equation.

\begin{aligned}41.27&=0\timest+\dfrac{1}{2}\times9.8{t_2}^2\\41.27&=4.9{t_2}^2\\{t_2}^2&=\dfrac{{41.27}}{{4.9}}\\&=2.9{\text{ s}}\\\end{aligned}

Now, the total time taken by bag to strike the ground from the instant of release is,

\begin{aligned}T&={t_2}+t\\&=2.9+0.51\\&=3.41\text{ s}\\\end{aligned}

Thus, the time taken after release the bag to strike the ground is \boxed{3.41\text{ s}}.

Learn more:

1. Average kinetic energy: brainly.com/question/9078768

2. Broadcast wavelength of the radio station: brainly.com/question/9527365

3. Determine the acceleration a of the red block brainly.com/question/6088121

Answer detail:

Grade: Senior School

Subject: Physics

Chapter: Kinematics

Keywords:

Hot air balloon, constant velocity, height of, position of sandbag, velocity of sandbag, total time, rising up, 5m/s, 40m, 1.05 s, displacement, balloonist, strike the ground.

You might be interested in
Explain how you think humans have disrupted the nitrogen cycle HELP QUICK DUE APRIL 15TH ANYBODY
mina [271]

Answer:

Scientists have determined that humans are disrupting the nitrogen cycle by altering the amount of nitrogen that is stored in the biosphere. The chief culprit is fossil fuel combustion, which releases nitric oxides into the air that combine with other elements to form smog and acid rain.

5 0
3 years ago
A police siren sounds different as it comes close to you than when it moves away from you. what term explains how this happens?
Sholpan [36]
The answer is: b. the doppler effect
3 0
3 years ago
Read 2 more answers
Which type of bond does this molecule have?
Gnesinka [82]
They share covalent bonds
3 0
3 years ago
“I know what the atomic number of this atom is, but I don’t know what the number of electrons is,” a friend says. How would you
liq [111]

Once the atomic number of an atom is known, the number of electrons can be deduced depending on if the atom is an ion or a neutral one.

<h3>Atomic number</h3>

The atomic number of an atom is the number of protons in the nucleus of the atom.

For atoms that are neutral, that is, no net charges, the number of protons is always equal to the number of electrons. In other words, the positive charges always balance the negative charges in neutral atoms.

Thus, if the atomic number of a neutral atom is 6, for example, the proton number will also be 6. Since the proton must balance the electron, the number of electrons will also be 6.

More on atomic numbers can be found here; brainly.com/question/17274608

8 0
2 years ago
Si aplicamos una fuerza constante de 30 N sobre un cuerpo de 25 Kg, este se mueve de tal manera que en 5 s adquiere la velocidad
Ganezh [65]

Answer:

<em>Si hay rozamiento y el valor de la fuerza de roce es 10 N</em>

Explanation:

<u>Fuerza Neta</u>

La fuerza neta sobre un cuerpo es la suma vectorial de todas las fuerzas actuantes sobre el mismo.

Si conocemos el módulo de la fuerza neta F y la masa m del cuerpo, aplicamos la segunda ley de Newton para relacionarlas con la aceleración a:

F=m.a

Tenemos los datos cinemáticos de la situación, según la cual el cuerpo adquiere una velocidad (desde el reposo) de 4 m/s en 5 s.

Utilizamos la fórmula:

v_f=v_o+a.t

Y despejamos la aceleración:

\displaystyle a=\frac{v_f-v_o}{t}

\displaystyle a=\frac{4-0}{5}

a=0.8 \ m/s^2

Podemos calcular la aceleración real que el cuerpo adquiere, producto de una fuerza efectiva igual a:

F_e=25\ Kg\cdot 0.8 \ m/s^2

F_e=20\ N

Si se está aplicando una fuerza de F_a= 30 N y solo 20 N producen movimiento, entonces se está perdiendo en rozamiento una fuerza:

F_r=F_a-F_e=30 - 20=10

F_r=10\ N

Si hay rozamiento y el valor de la fuerza de roce es 10 N

8 0
3 years ago
Other questions:
  • Which fact is NOT true about gravity?
    13·2 answers
  • How is speed determined?
    13·1 answer
  • What is the pattern for mass, speed, and energy. <br> Please answer this asap.<br> thanks.
    9·1 answer
  • Which organelle acts like the transportation or circulatory system of the cell?
    5·1 answer
  • You will often have to pay a small fee<br> to obtain a web address.<br> True<br> False
    6·1 answer
  • What kind of circuit is the one shown below?
    14·1 answer
  • Models are particularly useful in relativity and quantum mechanics, where conditions are outside those normally encountered by h
    13·1 answer
  • I miss having friends
    5·2 answers
  • Which of the following statements about social connections today is most accurate?
    6·1 answer
  • Please help me I have to send for my teacher​
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!