Answer:
The answer is 2,416 m/s. Let's jump in.
Explanation:
We do work with the amount of energy we can transfer to objects. According to energy theory:
W = ΔE
Also as we know W = F.x
We choose our reference point as a horizontal line at the block's rest point.<u> At the rest, block doesn't have kinetic energy</u> and <u>since it is on the reference point(as we decided) it also has no potential energy.</u>
Under the force block gains;
W = F.x → 
In the second position block has both kinetic and potential energy. Following the law of conservation of energy;
W = ΔE = Kinetic energy + Potantial Energy
W = ΔE = 
Here we can find h in the triangle i draw in the picture using sine theorem;
In a triangle 
In our situation
→ 
Therefore

→ 
Increase .... decrease .... presumably it's the "best shape" for a body which has been formed by the gravitational force
To calculate the change in kinetic energy, you must know the force as a function of position. The work done by the force causes the kinetic energy change
Explanation:
The work-energy theorem states that the change in kinetic enegy of an object is equal to the work done on the object:

where the work done is the integral of the force over the position of the object:

As we see from the formula, the magnitude of the force F(x) can be dependent from the position of the object, therefore in order to solve correctly the integral and find the work done on the object, it is required to know the behaviour of the force as a function of the position, x.
200 N, that is if the force is balanced and the wall doesn't move