the answer is True you can convert matter and energy
Answer:
20 meters.
Explanation:
In the graph, the x-axis (the horizontal axis) represents the time, while the y-axis (the vertical axis) represents the distance.
If we want to find the distance covered in the first T seconds, you need to find the value T in the horizontal axis.
Once you find it, we draw a vertical line, in the point where this vertical line touches the graph, we now draw a horizontal line. This horizontal line will intersect the y-axis in a given value. That value is the total distance travelled by the time T.
In this case, we want to find the total distance that David ran in the first 4 seconds.
Then we need to find the value 4 seconds in the horizontal axis. Now we perform the above steps, and we will find that the correspondent y-value is 20.
This means that in the first 4 seconds, David ran a distance of 20 meters.
Answer:
Explanation:
See the attachment for the details. A right triangle is formed to find the hypotenuse of the two legs consisting of the actual driving distances and times. The hypotenuse gives the vector information for the displacement at the end of 8 hours of driving.
The individual driving times and distances are summed to provide:
(<u>a) How far did he travel?</u>
103 km
<u>(b) What was his average speed?</u>
12.88 km/h
<u>(c) What was his displacement?</u>
73.82 km
<u>(d) What was his average velocity?</u>
9.228 km/h
Answer:
A precipitate is a solid that separates out of a liquid solution when it is supersaturated (insoluble). This is a chemical change.
Explanation:
Precipitation is when a chemical substance converts into a solid from a solution by converting the substance into an insoluble form or a super-saturated solution. When the reaction occurs in a liquid solution, the solid formed is called the precipitate.
Hope that helps.
Answer:
Yes both = and - g can be felt by a rider in a roller coaster.
Explanation:
It is crucial to understand how we feel gravity in this case.
We humans have no sensory organs to directly detect magnitude and direction like some birds and other creatures, but then how do we we feel gravity?
When we stand on our feet we feel our weight due to the normal reaction of floor on our feet trying to keep us stand and our weight trying to crush us down. In an elevator we feel difference in our weight (difference magnitudes of gravity) but actually we are feeling the differences in normal reactions under different accelerations of the elevator.
In the case of roller coaster you will feel +g as you sit on a chair in it, but will feel -g when you are in upside down position as roller coaster move.
When you are seated you will feel the normal reaction of seat on you giving you the feeling +g and the support of the buckles to stay in the roller coaster when you are upside down will give you the -g feeling.
<u>This is just the physics approach</u>, a biological approach can be given in association with sensors relating to ears.