Smooth, rough
Less, more
Fast, slow
If an object's velocity is steadily increasing it means that the acceleration is constant at a certain value.
Choice A shows an acceleration of zero which would only be true if the object was not moving or if its velocity was not changing.
Choice B gives us a graph showing acceleration increasing over time and is therefore incorrect.
Choice C is correct because the acceleration is constant. Steadily increasing tells us that the acceleration is fixed at a certain value.
Choice D is incorrect an represents a constant negative acceleration. This would be the case if the object was steadily decreasing in velocity.
Answer:
A free body diagram with 2 forces: the first pointing downward labeled F Subscript g Baseline 20 N and the second pointing upward labeled F Subscript air Baseline 20 N.
Explanation:
This is because at terminal velocity, the ball stops accelerating and the net force on the ball is zero. For the net force to be zero, equal and opposite forces must act on the ball, so that their resultant force is zero. That is F₁ + F₂ = 0 ⇒ F₁ = -F₂
Since F₁ = 20 N, then F₂ = -F₁ = -20 N
So, if F₁ points upwards since it is positive, then F₂ points downwards since it is negative.
So, a free body diagram with 2 forces: the first pointing downward labeled F Subscript g Baseline 20 N and the second pointing upward labeled F Subscript air Baseline 20 N best describes the ball falling at terminal velocity.
Answer:
For any collision occurring in an isolated system, momentum is conserved. The total amount of momentum of the collection of objects in the system is the same before the collision as after the collision.
Explanation:
Hope this helps
Responder:
<h2>
490 julios
</h2>
Explicación:
Se dice que el trabajo se realiza cuando una fuerza aplicada a un objeto hace que el objeto se mueva a través de una distancia. El trabajo realizado por un cuerpo se expresa mediante la fórmula;
Workdone = Fuerza * Distancia
Como Fuerza = masa * aceleración,
Workdone = masa * aceleración * distancia
Masa dada = 5.0kg, aceleración = 2.0m / s² d =?
Para obtener d, usaremos una de las leyes del movimiento,
d = ut + 1 / 2at²
u = 0 (ya que el cuerpo acelera desde el reposo) yt = 7.0s
d = 0 + 1/2 (2) (7) ²
d = 49m
Workdone = 5 * 2 * 49
Workdone = 490 Julios