Answer:
Mass of KNO3= 10g
Molar mass of KNO3 = 101.1032g/mol
Volume = 250ml = 0.25L
No of mole on of KNO3 = mass of KNO3/Molar mass of KNO3
no of mole of KNO3 = 10/101.1032
No of mole of KNO3 = 0.09891
molarity of KNO3 = no of mole of KNO3/Vol (L)
Molarity = 0.09891/0.25 = 0.3956M
Molarity of KNO3 = 0.3956M

The element having valency of 1 is ~
Answer:
Curvature
Explanation:
In mathematics, curvature is any of several strongly related concepts in geometry. Intuitively, the curvature is the amount by which a curve deviates from being a straight line, or a surface deviates from being a plane. For curves, the canonical example is that of a circle, which has a curvature ... For being meaningful, the definition of the curvature and its different
<u>Answer:</u> The equilibrium concentration of
is 0.332 M
<u>Explanation:</u>
We are given:
Initial concentration of
= 2.00 M
The given chemical equation follows:

<u>Initial:</u> 2.00
<u>At eqllm:</u> 2.00-2x x x
The expression of
for above equation follows:
![K_c=\frac{[CO_2][CF_4]}{[COF_2]^2}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BCO_2%5D%5BCF_4%5D%7D%7B%5BCOF_2%5D%5E2%7D)
We are given:

Putting values in above expression, we get:

Neglecting the value of x = 1.25 because equilibrium concentration of the reactant will becomes negative, which is not possible
So, equilibrium concentration of ![COF_2=(2.00-2x)=[2.00-(2\times 0.834)]=0.332M](https://tex.z-dn.net/?f=COF_2%3D%282.00-2x%29%3D%5B2.00-%282%5Ctimes%200.834%29%5D%3D0.332M)
Hence, the equilibrium concentration of
is 0.332 M