Answer:
Explanation:
I can tell you what the answers for the middle column are, but if you don't know how to solve total energy problems, they won't make any sense to you at all.
First row, KE = 0
Second row, KE = 220500 J
Third row, KE = 183750 J
Fourth row, KE = 205800 J
That's also not paying any attention to significant digits because your velocity only had 1 and that's not enough to do the problem justice. I left all the digits in the answer. Round how your teacher tells you to.
The change in potential energy when the block falls to ground is -480J.
The maximum change in kinetic energy of the ball is 480 J.
The initial kinetic energy of the ball is 0 J.
The final kinetic energy of the ball is 0.148J.
The initial potential energy of the ball is 0.187 J.
The final potential energy of the ball is 0 J.
The work done by the air resistance is 0.039 J.
<h3>Change in potential energy when the block falls to ground</h3>
ΔP.E = -mgh
ΔP.E = -Wh
ΔP.E = - 40 x 12
ΔP.E = -480 J
<h3>Maximum change in kinetic energy of the ball</h3>
ΔK.E = - ΔP.E
ΔK.E = - (-480 J)
ΔK.E = 480 J
<h3>Initial kinetic energy of the ball</h3>
K.Ei = 0.5mv²
where;
- v is zero since it is initially at rest
K.Ei = 0.5m(0) = 0
<h3>Final kinetic energy</h3>
K.Ef = 0.5mv²
K.Ef = 0.5(0.0091)(5.7)²
K.Ef = 0.148 J
<h3>Initial potential energy of the ball</h3>
P.Ei = mghi
P.Ei = 0.0091 x 9.8 x 2.1
P.Ei = 0.187 J
<h3>Final potential energy</h3>
P.Ef = mghf
P.Ef = 0.0091 x 9.8 x 0
P.Ef = 0
<h3>Work done by the air resistance</h3>
W = ΔE
W = P.E - K.E
W = 0.187 J - 0.148 J
W = 0.039 J
Learn more about potential energy here: brainly.com/question/1242059
#SPJ1
<h3 />
Answer:
The magnetic field strength of an electromagnet is therefore determined by the ampere turns of the coil with the more turns of wire in the coil the greater will be the strength of the magnetic field.
Explanation:
Answer:
d. Direction and magnitude
Explanation:
The two components of a vector are its magnitude and direction.
Magnitude is the quantity of the substance
Direction is the path.
- Other quantities are called scalar quantities.
- Scalar quantities have only magnitude but no direction.
Examples of vector quantities are velocity, displacement, acceleration.
Answer:

Explanation:
We know that weight of an object on Earth is,

Thus,

where,
m = mass of an object, which is constant and is independent of gravity
g = acceleration due to gravity on Earth
On the new planet, gravity = a
Thus the weight of the object on the new planet will be

