Answer:
25 meters
Explanation:
1 sec is 2.5, 1x10 so 2.5x10=25
The answer is Monocline. And I checked it, it's correct.
Answer:
The force required to push to stop the car is 288.67 N
Explanation:
Given that
Mass of the car, m = 1000 kg
Initial speed of the car, u = 1 m/s
The car and push on the hood at an angle of 30° below horizontal, 
Distance, d = 2 m
Let F is the force must you push to stop the car.
According work energy theorem theorem, the work done is equal to the change in kinetic energy as :



The force required to push to stop the car is 288.67 N
Answer
given,
length of bar = 80 cm
mass of the bar = 10 kg
smaller mass = 4 kg
distance = 20 cm


taking moment about B






difference between two scale = 8 - 6
= 2 N
1,000 W = 1 kW
100 W = 0.1 kW
(0.1 kW) x (6 h) = 0.6 kWh <=== energy
(0.6 kWh) x (£0.1359/kWh) = £0.0815 <=== cost of it