1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
expeople1 [14]
3 years ago
15

Co-efficient of volume expansion depends upon? ??

Physics
1 answer:
timama [110]3 years ago
6 0
I think it depends on the temperature...
You might be interested in
Very far from earth (at R- oo), a spacecraft has run out of fuel and its kinetic energy is zero. If only the gravitational force
Margaret [11]

Answer:

Speed of the spacecraft right before the collision: \displaystyle \sqrt{\frac{2\, G\cdot M_\text{e}}{R\text{e}}}.

Assumption: the earth is exactly spherical with a uniform density.

Explanation:

This question could be solved using the conservation of energy.

The mechanical energy of this spacecraft is the sum of:

  • the kinetic energy of this spacecraft, and
  • the (gravitational) potential energy of this spacecraft.

Let m denote the mass of this spacecraft. At a distance of R from the center of the earth (with mass M_\text{e}), the gravitational potential energy (\mathrm{GPE}) of this spacecraft would be:

\displaystyle \text{GPE} = -\frac{G \cdot M_\text{e}\cdot m}{R}.

Initially, R (the denominator of this fraction) is infinitely large. Therefore, the initial value of \mathrm{GPE} will be infinitely close to zero.

On the other hand, the question states that the initial kinetic energy (\rm KE) of this spacecraft is also zero. Therefore, the initial mechanical energy of this spacecraft would be zero.

Right before the collision, the spacecraft would be very close to the surface of the earth. The distance R between the spacecraft and the center of the earth would be approximately equal to R_\text{e}, the radius of the earth.

The \mathrm{GPE} of the spacecraft at that moment would be:

\displaystyle \text{GPE} = -\frac{G \cdot M_\text{e}\cdot m}{R_\text{e}}.

Subtract this value from zero to find the loss in the \rm GPE of this spacecraft:

\begin{aligned}\text{GPE change} &= \text{Initial GPE} - \text{Final GPE} \\ &= 0 - \left(-\frac{G \cdot M_\text{e}\cdot m}{R_\text{e}}\right) = \frac{G \cdot M_\text{e}\cdot m}{R_\text{e}} \end{aligned}

Assume that gravitational pull is the only force on the spacecraft. The size of the loss in the \rm GPE of this spacecraft would be equal to the size of the gain in its \rm KE.

Therefore, right before collision, the \rm KE of this spacecraft would be:

\begin{aligned}& \text{Initial KE} + \text{KE change} \\ &= \text{Initial KE} + (-\text{GPE change}) \\ &= 0 + \frac{G \cdot M_\text{e}\cdot m}{R_\text{e}} \\ &= \frac{G \cdot M_\text{e}\cdot m}{R_\text{e}}\end{aligned}.

On the other hand, let v denote the speed of this spacecraft. The following equation that relates v\! and m to \rm KE:

\displaystyle \text{KE} = \frac{1}{2}\, m \cdot v^2.

Rearrange this equation to find an equation for v:

\displaystyle v = \sqrt{\frac{2\, \text{KE}}{m}}.

It is already found that right before the collision, \displaystyle \text{KE} = \frac{G \cdot M_\text{e}\cdot m}{R_\text{e}}. Make use of this equation to find v at that moment:

\begin{aligned}v &= \sqrt{\frac{2\, \text{KE}}{m}} \\ &= \sqrt{\frac{2\, G\cdot M_\text{e} \cdot m}{R_\text{e}\cdot m}} = \sqrt{\frac{2\, G\cdot M_\text{e}}{R_\text{e}}}\end{aligned}.

6 0
3 years ago
You are on a sled at the top of a hemispherical, snowy hill of radius 13 m. You begin to slide down the hill. How fast are you m
8_murik_8 [283]

Answer:

Explanation:

There will be loss of potential energy due to loss of height and gain of kinetic energy .

loss of height = R - R cos 14 ,    R is radius of hemisphere .

R ( 1 - cos 12 )

= 13 ( 1 - .978 )

h = .286 m

loss of potential energy

= mgh

= m x 9.8 x .286

= 2.8 m

gain of kinetic energy

1/2 m v ² = mgh

v² = 2 g h

v²  = 2 x 9.8 x 2.8

v = 7.40 m /s

4 0
3 years ago
Read 2 more answers
A solenoid with an inductance of 8 mH is connected in series with a resistance of 5 Ω and an EMF forming a series RL circuit. A
monitta

Answer:

induced EMF = 240 V

and by the lenz's law  direction of induced EMF is opposite to the applied EMF

Explanation:

given data

inductance = 8 mH

resistance = 5 Ω

current = 4.0 A

time t = 0

current grow = 4.0 A to 10.0 A

to find out

value and the direction of the induced EMF

solution

we get here induced EMF of induction is express as

E = - L \frac{dI}{dt}    ...................1

so E = - L \frac{I2 - I1}{dt}

put here value we get

E = - 8 × 10^{-3} \frac{10 - 4}{0.2*10^{-3}}

E = -40 ×  6

E = -240

take magnitude

induced EMF = 240 V

and by the lenz's law we get direction of induced EMF is opposite to the applied EMF

5 0
3 years ago
Four charges are on the four corners of a square. Q1 = +5μC, Q2 = -10μC, Q3 = +5μC, Q4 = -10μC. The side length of the square is
Marat540 [252]

Answer:

Explanation:

Electric field due to a point charge Q at a point at distance d is given by the relation

E = \frac{K\times Q}{d^2}

Since Q1 and Q2 are of the same magnitude and distance , so they will create eletric field of same magnitude. Similarly field due to rest of the charges will also be same.

The charges are situated on the corners of a square in such a way that

equal charges of Q1 and Q3 are situated on the diametrically  opposite corners of the square. Fields due to these two charges will be equal and opposite in direction. Therefore net field due to these two  charges will be zero.  

On the same ground, we can say that field due to Q2 and Q4 at the centre will be equal and opposite and therefore they will cancel out each other. Net field at the centre will be zero

Overall, net field due to all the four charges will be zero

3 0
3 years ago
a 5.0 charge is placed at the 0 cm mark of a meterstick and a -4.0 charge is placed at the 50 cm mark. what is the electric fiel
Lesechka [4]

Answer:

-1748*10^N/C

Explanation:

See attached file

8 0
3 years ago
Other questions:
  • Is cold fusion science or pseudoscience
    12·1 answer
  • The force of gravity considers which two parts?
    14·1 answer
  • What is the formula of conservation of linear momentum
    9·1 answer
  • HELP the decay curve of twizzlers sheet!!!!!
    14·1 answer
  • A wildlife photographer uses a moderate telephoto lens of focal length 135 mm and maximum aperture f/4.00 to photograph a bear t
    15·1 answer
  • 6. The momentum of a 30.0 g bird with a speed of 12 m.s-1 is 0.36 kg.m.s-1. What will be its momentum 12s later if a constant .0
    11·1 answer
  • Is this right? Please help me ITS SOCIOLOGY
    13·1 answer
  • Compare an Earth year to a cosmic year
    8·1 answer
  • What is kinematics?<br>explain!!~​<br><br>thankyou ~
    11·2 answers
  • How much energy is required to accelerate a golf ball of mass 0.046 kg initially at rest to a speed of 0.75c?
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!