Answers:
a) 9.035 s
b) -88.543 m/s
Explanation:
The described situation is related to vertical motion (especifically free fall) and the equations that will be useful are:
(1)
(2)
Where:
is the final height of the steel ball
is the initial height of the steel ball
is the initial velocity of the steel ball (it was dropped)
is the final velocity of the steel ball
is the time it takes to the steel ball to reach the ground
is the acceleration due to gravity
<u>Knowing this, let's begin with the answers:</u>
<h2>a) Time it takes the steel ball to reach the ground</h2>
We will use equation (1) with the conditions listed above:
(3)
Isolating
:
(4)
(5)
(6)
<h2>b) Final velocity of the steel ball</h2>
We will use equation (2) with the conditions explained above and the calculaated time:
(7)
(8)
(9) The negative sign indicates the direction of the velocity is downwards
Answer:
v = 66 m/s
Explanation:
Given that,
The initial velocity of a car, u = 0
Acceleration of the car, a = 11 m/s²
We need to find the final velocity of the toy after 6 seconds.
Let v is the final velocity. It can be calculated using first equation of motion. It is given by :
v = u +at
v = 0 + 11 m/s² × 6 s
v = 66 m/s
So, the final velocity of the car is 66 m/s.
No, if the car were moving sideways, then the forces used would be on the horizontal axis. So the weight equation would be extraneous, unless one is determining the net force through an inclined plane