Answer:
66.375 x 10⁻⁶ C/m
Explanation:
Using Gauss's law which states that the net electric flux (∅) through a closed surface is the ratio of the enclosed charge (Q) to the permittivity (ε₀) of the medium. This can be represented as
;
∅ = Q / ε₀ -----------------(i)
Where;
∅ = 7.5 x 10⁵ Nm²/C
ε₀ = permittivity of free space (which is air, since it is enclosed in a bag) = 8.85 x 10⁻¹² Nm²/C²
Now, let's first get the charge (Q) by substituting the values above into equation (i) as follows;
7.5 x 10⁵ = Q / (8.85 x 10⁻¹²)
Solve for Q;
Q = 7.5 x 10⁵ x 8.85 x 10⁻¹²
Q = 66.375 x 10⁻⁷ C
Now, we can find the linear charge density (L) which is the ratio of the charge(Q) to the length (l) of the rod. i.e
L = Q / l ----------------------(ii)
Where;
Q = 66.375 x 10⁻⁷ C
l = length of the rod = 10.0cm = 0.1m
Substitute these values into equation (ii) as follows;
L = 66.375 x 10⁻⁷C / 0.1m
L = 66.375 x 10⁻⁶ C/m
Therefore, the linear charge density (charge per unit length) on the rod is 66.375 x 10⁻⁶ C/m.
When angle between them is zero
A hypothesis can be described as an intelligent guess
26.2/3.4 would be the average velocity for the run.
7.7 miles/hr
The position-time graphs show the relationship between the position of an object (shown on the y-axis) and the time (shown on the x-axis) to show velocity.
<h3>What is velocity?</h3>
Velocity is a vector quantity that tells the distance an object has traveled over a period of time.
Displacement is a vector quality showing total length of an area traveled by a particular object.
Imagine a time-position graph where the velocity of an object is constant. What will be observed on the graph concerning the slope of the line segment as well as the velocity of the object?
The slope of the line is equal to zero and the object will be stationary.
The position-time graphs show the relationship between the position of an object (shown on the y-axis) and the time (shown on the x-axis) to show velocity.
To learn more about velocity refer to the link
brainly.com/question/18084516
#SPJ2