Energy to lift something =
(mass of the object) x (gravity) x (height of the lift).
BUT ...
This simple formula only works if you use the right units.
Mass . . . kilograms
Gravity . . . meters/second²
Height . . . meters
For this question . . .
Mass = 55 megagram = 5.5 x 10⁷ grams = 5.5 x 10⁴ kilograms
Gravity (on Earth) = 9.8 m/second²
Height = 500 cm = 5.0 meters
So we have ...
Energy = (5.5 x 10⁴ kilogram) x (9.8 m/s²) x (5 m)
= 2,696,925 joules .
That's quite a large amount of energy ... equivalent to
straining at the rate of 1 horsepower for almost exactly an
hour, or burning a 100 watt light bulb for about 7-1/2 hours.
The reason is the large mass that's being lifted.
On Earth, that much mass weighs about 61 tons.
Answer:
Explanation:
Given that,
Mass of star M(star) = 1.99×10^30kg
Gravitational constant G
G = 6.67×10^−11 N⋅m²/kg²
Diameter d = 25km
d = 25,000m
R = d/2 = 25,000/2
R = 12,500m
Weight w = 690N
Then, the person mass which is constant can be determined using
W =mg
m = W/g
m = 690/9.81
m = 70.34kg
The acceleration due to gravity on the surface of the neutron star is can be determined using
g(star) = GM(star)/R²
g(star) = 6.67×10^-11 × 1.99×10^30 / 12500²
g (star) = 8.49 × 10¹¹ m/s²
Then, the person weight on neutron star is
W = mg
Mass is constant, m = 70.34kg
W = 70.34 × 8.49 × 10¹¹
W = 5.98 × 10¹³ N
The weight of the person on neutron star is 5.98 × 10¹³ N
<span>...a concordant intrusion.
In geology, "concordant" means the same as "sill" -- or, an intrusion that has gotten in between older layers of rock (or even beds of volcanic lava). An intrusion with boundaries parallel to layering in surrounding rocks suggests this, meaning it is considered to be a concordant intrusion.</span>
Answer:
q = C V charge on 1 capacitor
q = 1 * 10E-6 * 110 = 1.1 * 10E-4 C per capacitor
N = Q / q = 1 / 1.1 * 10E-4 = 9091 capacitors
Answer:
B. 2 m/s
B. Acceleration = 4.05 m/s² and Tension = 297.5 N.
Explanation:
A force is applied on a mass m whose acceleration is 4 m/s
Force = mass × acceleration
a = F/m = 4 m/s
4 m/s = F/m
F = 4 m/s (m)
If Force of 2F is applied on a mass of 4m ; it acceleration is as follows:
2F/4 m = F/ 2m
4m/s (m) / 2m = 2 m/s
a = 2 m/s
2.
Given that
mass
= 30 kg
mass
= 50 kg
= 0.1
From the question; we can arrive at two cases;
That :
----- equation (1)
---- equation (2)
50 a = 50 g - T
30 a = T - 30 g sin 30 - 4 × 30 g cos 30
By summation
80 a =
g
80 a = 32. 4 × 10 m/s ² (using g as 10m/s²)
80 a = 324 m/s ²
a = 324/80
a = 4.05 m/s²
From equation , replace a with 4.05
50 × 4.05 = 50 × 10 - T
T = 500 -202.5
T =297.5 N