Answer:
<em>The final speed of the second package is twice as much as the final speed of the first package.</em>
Explanation:
<u>Free Fall Motion</u>
If an object is dropped in the air, it starts a vertical movement with an acceleration equal to g=9.8 m/s^2. The speed of the object after a time t is:

And the distance traveled downwards is:

If we know the height at which the object was dropped, we can calculate the time it takes to reach the ground by solving the last equation for t:

Replacing into the first equation:

Rationalizing:

Let's call v1 the final speed of the package dropped from a height H. Thus:

Let v2 be the final speed of the package dropped from a height 4H. Thus:

Taking out the square root of 4:

Dividing v2/v1 we can compare the final speeds:

Simplifying:

The final speed of the second package is twice as much as the final speed of the first package.
Answer:
A) the ammeter is x
B)
- voltage across R₁ (left resistor) = 0.75 V
- voltage across the right one = 0.3 V
C) 1.05 V
Explanation:
From the diagram attached below;
A) Assuming the homes were wired in series, and one of the homes face short circuit then all the houses would face power cut but it doesn't happen. So they must be connected in parallel.
Therefore; The ammeter is connected in series, Hence, the ammeter is x and the voltmeter must be z.
B)
Given that:
x = 0.15 A
z = 0.3 V
Resistor (R) on the left = 5 ohms
Then, voltage across R₁ (left resistor) = 5×(x)
= 5×0.15
= 0.75 V
voltage across the right one = z = 0.3 V
C)
The total voltage of battery = 0.75+0.3 = 1.05 V
The answer is C, as there is not increase or decrease in speed during that time frame.
Answer:
C should be the correct answer,
Explanation:
The gas which produce heat in the atmosphere as it is increased is called a greenhouse gas. Gases like argon , nitrogen, and Oxygen etc. is not a greenhouse gas. Since O3 is not a greenhouse gas it cannot produce heat in the atmosphere .
Hope you understand,
Answer:
Explanation:
The spring is stretched by .5 m and then released that means its amplitude of oscillation A is 0.5 m .
A = 0.5 m
After the release at one extreme point , the mass comes to rest again at another extreme point after half the time period ie
T / 2 = .3 s
T = 0.6 s
Angular velocity
ω = 
ω = 
ω = 10.45
Maximum velocity = ω A
ω and A are angular velocity and amplitude of oscillation.
Maximum velocity = 10.45 x .5
= 5.23 m /s