Answer:
3.6 x 10⁶ Pa
Explanation:
A = Area of the heel = 1.50 cm² = 1.50 x 10⁻⁴ m²
m = mass of the woman = 55.0 kg
g = acceleration due to gravity = 9.8 m/s²
Force of gravity on the heel is given as
F = mg
Inserting the values
F = (55) (9.8)
F = 539 N
Pressure exerted on the floor is given as


P = 3.6 x 10⁶ Pa
Answer:
Who are the people for you then I can help you format the essay
Explanation:
Answer:
B. has a smaller frequency
C. travels at the same speed
Explanation:
The wording of the question is a bit confusing, it should be short/long for wavelength and low/high for frequency. I assume low wavelength mean short wavelength.
All sound wave travel with the same velocity(343m/s) so wavelength doesn't influence its speed at all. It won't be faster or slower, it will have the same speed.
Velocity is a product of wavelength and frequency. So, a long-wavelength sound wave should have a lower frequency.
The option should be:
A. travels slower -->false
B. has a smaller frequency -->true
C. travels at the same speed --->true
D. has a higher frequency --->false
E. travels faster has the same frequency --->false
Answer:
The number of oxygen molecules in the left container greater than the number of hydrogen molecules in the right container.
Explanation:
Given:
Molar mass of oxygen, 
Molar mass of hydrogen, 
We know ideal gas law as:

where:
P = pressure of the gas
V = volume of the gas
n= no. of moles of the gas molecules
R = universal gs constant
T = temperature of the gas
∵
where:
m = mass of gas in grams
M = molecular mass of the gas
∴Eq. (1) can be written as:


as: 
So,

Now, according to given we have T,P,R same for both the gases.




∴The molecules of oxygen are more densely packed than the molecules of hydrogen in the same volume at the same temperature and pressure. So, <em>the number of oxygen molecules in the left container greater than the number of hydrogen molecules in the right container.</em>
Answer:
Electromagnetic induction
Explanation:
The process of generating electric current with a magnetic field. It occurs whenever a magnetic field and an electric conductor move relative to one another so the conductor crosses lines of force in the magnetic field.