Answer:
250 mL (total solution) = 104 mL (stock solution) + 146 mL (water)
Explanation:
Data Given
M1 = 6.00 M
M2 = 2.5 M
V1 = 250 mL
V2 = ?
Solution:
As the chemist needs to prepare 250 mL of solution from 6.00 M ammonium hydroxide solution to prepare a 2.50 M aqueous solution of ammonium hydroxide.
Now
first he have to determine the amount of ammonium hydroxide solution that will be taken from6.00 M ammonium hydroxide solution
For this Purpose we use the following formula
M1V1=M2V2
Put values from given data in the formula
6 x V1 = 2.5 x 250
Rearrange the equation
V1 = 2.5 x 250 /6
V1 = 104 mL
So 104 mL is the volume of the solution which we have to take from the 6.00 M ammonium hydroxide solution to prepare 2.5 M aqueous solution of ammonium hydroxide
But we have to prepare 250 mL of the solution.
so the chemist will take 104 mL from 6.00 M ammonium hydroxide solution and have to add 146 mL water to make 250 mL of new solution.
in this question you have to tell about the amount of water that is 146 mL
250 mL (total solution) = 104 mL (stock solution) + 146 mL (water)
Answer:
(a) 7.11 x 10⁻³⁷ m
(b) 1.11 x 10⁻³⁵ m
Explanation:
(a) The de Broglie wavelength is given by the expression:
λ = h/p = h/mv
where h is plancks constant, p is momentum which is equal to mass times velocity.
We have all the data required to calculate the wavelength, but first we will have to convert the velocity to m/s, and the mass to kilograms to work in metric system.
v = 19.8 mi/h x ( 1609.34 m/s ) x ( 1 h / 3600 s ) = 8.85 m/s
m = 232 lb x ( 0.454 kg/ lb ) = 105.33 kg
λ = h/ mv = 6.626 x 10⁻³⁴ J·s / ( 105.33 kg x 8.85 m/s ) = 7.11 x 10⁻³⁷ m
(b) For this part we have to use the uncertainty principle associated with wave-matter:
ΔpΔx > = h/4π
mΔvΔx > = h/4π
Δx = h/ (4π m Δv )
Again to utilize this equation we will have to convert the uncertainty in velocity to m/s for unit consistency.
Δv = 0.1 mi/h x ( 1609.34 m/mi ) x ( 1 h/ 3600 s )
= 0.045 m/s
Δx = h/ (4π m Δv ) = 6.626 x 10⁻³⁴ J·s / (4π x 105.33 kg x 0.045 m/s )
= 1.11 x 10⁻³⁵ m
This calculation shows us why we should not be talking of wavelengths associatiated with everyday macroscopic objects for we are obtaining an uncertainty of 1.11 x 10⁻³⁵ m for the position of the fullback.
Answer:
C. A hydrocarbon molecule containing six carbon atoms and only
single bonds
Explanation:
hope it helps
The best and most correct answer among the choices provided by your question is the second choice or letter B.
<span>The most accurate measurement based on the limitations of the balance that might be found in her recorded data would be 9.2</span>
I hope my answer has come to your help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead!