Answer:
Explanation:
Earliest standards were dependent on a single frequency/channel to both send and receive. This shared medium creates the same problem as half-duplex coax cable. Because receivers had to wait for the signal before sending a response, this reduced the overall bandwidth.
Other factors affect wireless signal propagation, too, including RF interference, antenna choice, and obstacles such as walls, trees, and even weather (precipitation, for example).
The magnetic field lines due to a straight, current-carrying wire are circular.
<u>Explanation:</u>
The concepts of Electromagnetism brought a new revolution to the science world. The idea is the source of many new modes of power and machines that reduces the manual work. Motors are the best example of machines that run on the concepts of electromagnetism. So the concept is that a current-carrying conductor induces a magnetic field in its nearby premise.
This magnetic field can perceive by the magnetic line of forces. Now, if we pour some iron dust around a current-carrying conductor, we'll see a concentric circular pattern around the straight wire whose centre will be at the conductor axis. The pattern of these magnetic lines of force may deflect with the variation of current in the wire but remain in the circular format.
The answer is 0.000824653J
You need to use the formula Mass * Velocity^2 over 2
Answer:

Explanation:
For light passing through a single slit, the position of the nth-minimum from the central bright fringe in the diffraction pattern is given by

where
is the wavelength
D is the distance of the screen from the slit
d is the width of the slit
In this problem, we have
is the wavelength of the red light
D = 14 m is the distance of the screen from the doorway
d = 1.0 m is the width of the doorway
Substituting n=1 into the equation, we find the distance between the central bright fringe and the first-order dark fringe (the first minimum):
