Answer:
A. 3.4 m
Explanation:
Given the following data;
Force = 56.7N
Workdone = 195J
To find the distance
Workdone is given by the formula;
Making "distance" the subject of formula, we have;

Substituting into the equation, we have;

Distance = 3.4 meters.
I would say 648858. bc yes
Answer:
Please do not take my word for this at all, but this is what I found, "When the pendulum swings back down, the potential energy is converted back into kinetic energy. At all times, the sum of potential and kinetic energy is constant." So I think the answer is B also you are anime fan too lol :DD I love hinata
Explanation:
Magnitude of displacement = 
Adding the squares gives displacement = 
Displacement =
≈ 724.7m
At the point of maximum displacement (a), the elastic potential energy of the spring is maximum:

while the kinetic energy is zero, because at the maximum displacement the mass is stationary, so its velocity is zero:

And the total energy of the system is

Viceversa, when the mass reaches the equilibrium position, the elastic potential energy is zero because the displacement x is zero:

while the mass is moving at speed v, and therefore the kinetic energy is

And the total energy is

For the law of conservation of energy, the total energy must be conserved, therefore

. So we can write

that we can solve to find an expression for v: