The answer would be B because humans cannot see electrons so we visualize the electrons due to the theory
Answer:
Explanation:
F=kx
x=F/k
F=2000 kg
x=100 cm=9*10^-3
effective spring constant=k=F/x
k=2000/9*10^-3=2.2*10^-5
now frequency
f=1/2π√k/m
f=1/2*3.14√2.2*10^-5/310
f=1/6.28√7.097*10^-8
f=1/6.28*2.7*10^-4
f=0.16*2.7*10^-4
f=4.32*10^-5
Answer:
Water normally freezes at 0°C (32°F). Salt lowers the freezing temperature. (That is, it can remain a liquid at much lower temperatures.)
When sprinkled on ice, the salt lowers the freezing temperature of the water which effectively melts the ice when the salt dissolves into it. There is a limit to how low it can reduce the temperature, though. If the temperature drops below -9°C (15°F), it's too cold for the salt to dissolve into the ice.
When making ice cream, the salt lowers the temperature of the ice and water sufficiently enough to freeze the cream.
If you go to high you’ll run out of oxygen and possibly be blown off due to high winds.