I am absolutely sure that the way how can a moving coil galvanometer can be made into a dc ammeter is of course by connecting a. low resistance across the meter. You should remember that you must connect <span>a shunt resistor straight across the galvanometer. Do hope this answer will help you! Regards.</span>
Explanation:
sorry I can't help u right now
A billiard ball collides with a stationary identical billiard ball to make it move. If the collision is perfectly elastic, the first ball comes to rest after collision.
<h3>Why does the first ball comes to rest after collision ?</h3>
Let m be the mass of the two identical balls.
u1 = velocity before the collision of ball 1
u2 = 0 = velocity of second ball that is at rest
v1 and v2 are the velocities of the balls after the collision.
From the conservation of momentum,
∴ mu1 + mu2 = mv1 + mv2
∴ mu1 = mv1 + mv2
∴ u1 = v1 + v2
In an elastic collision, the kinetic energy of the system before and after collision remains same.

∴ 
∴ 
∴
₁
₂ = 0
- It is impossible for the mass to be zero.
- Because the second ball moves, velocity v2 cannot be zero.
- As a result, the velocity of the first ball, v1, is zero, indicating that it comes to rest after collision.
<h3>What is collision ?</h3>
An elastic collision is a collision between two bodies in which the total kinetic energy of the two bodies remains constant. There is no net transfer of kinetic energy into other forms such as heat, noise, or potential energy in an ideal, fully elastic collision.
Can learn more about elastic collision from brainly.com/question/12644900
#SPJ4
This question deals with the volume of different shapes.
a) volume of the sphere is "33.51 m³".
b) volume of the cylinder is "25.13 m³".
a)
The volume of a sphere is given by the following formula:

<u>Volume = 33.51 m³</u>
<u />
b)
The volume of a cylinder is given by the following formula:

<u>Volume = 25.13 m³</u>
<u />
Learn more about <em>volume </em>here:
brainly.com/question/16686115?referrer=searchResults
The attached picture shows the formulae of the <em>volume</em> of different shapes.
Answer:
The image will most likely be 20cm in front the mirror since the mirror was placed further 5cm.